Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Властивості головного вектора, головного момента і результуючої приєднаної пари системи сил. Статичні інваріанти





 

Величини і напрямки головних векторів і у системі координат Oxyz (рис. 5.4) визначаються за правилами векторної алгебри формулами

; , (5.8)

де ; ; ;

; ;

;

; ; ;

; ; .

 

 

 


х

Рис. 5.4

 

 

Кут між векторами і визначається за допомогою формули їх скалярного добутку:

.

Якщо на практиці при вирішенні задач рівноваги твердого тіла виникає питання зміни центра приведення системи сил з точки О у наперед задану точку О 1, то головний вектор, головний момент і момент результуючої приєднаної пари системи сил мають наступні властивості.

Враховуючи вирази (5.2), (5.8) є очевидним, що головний вектор системи сил ні за величиною, ні за напрямком не залежить від положення центра приведення, тобто завжди виконуватиметься рівність (точка О 1 - новий центр приведення). Це обумовлено тим, що за формулою визначення () головний вектор є функцією тільки параметрів сил початкової системи і не залежить від положення точки О на тілі.

У механіці головний вектор називається першим статичним інваріантом. Це означає, що для будь-якої вихідної системи сил його величина і напрямок є сталими величинами, тобто незалежними (інваріантними) до вибору центра приведення:

,

де п - номер поточної точки приведення.

Момент результуючої приєднаної пари вихідної системи сил при перенесенні центра приведення буде визначатися (рис. 5.5) за формулою

, (5.9)

де - момент приєднаної пари сил.

На рис. 5.5 вектор є, за правилом векторного добутку, перпендикулярним що площини Е, якій належать вектори і , тобто .

 


Рис. 5.5

 

Вираз (5.9) отримано за допомогою наступних еквівалентних системних перетворень:

,

де .

При цьому використано лему про паралельне перенесення сили в точку О 1 з одночасним додаванням у центрі О 1 пари сил з моментом , рівним моменту вихідної сили відносно точки О 1, а також враховано властивості моменту (моменту приєднаної пари сил у точці О) як вільного вектора, який можна переносити паралельно самому собі в будь-яку точку тіла (в даному випадку з точки О у точці О 1). Крім того, використано властивості геометричного додавання векторів моментів пар сил у точці О 1, тобто:

. (5.10)

З рівняння (5.10) виходить, що момент приєднаної пари сил при перенесенні центра приведення змінюється на величину моменту пари сил, рівному моменту сили відносно нового центра приведення О 1.

Головний момент системи сил при перенесенні центра приведення вихідної системи сил матиме, в свою чергу, наступну властивість.

Враховуючи вираз (5.3) і рис. 5.6, отримаємо:

. (5.11)

 

Аk

 

 

Рис. 5.6

 

З рівняння (5.11) випливає, що головний момент вихідної системи сил при перенесенні центра приведення до точки О 1 змінюється на величину моменту головного вектора відносно нового центра приведення О 1.

Враховуючи рівняння (5.5) і (5.7) отримаємо вирази:

,

(5.12)

З виразу (5.12) випливає рівність моментів результуючої пари і головного моменту системи сил відносно нового центра зведення О 1, а також справедливість приведених на рис. 5.7 системних перетворень.

 

 

Рис. 5.7

Однак, на практиці виявилось, що більш зручним у використанні є рівняння (5.11), яке стосується головного моменту системи сил.

Розглянемо далі інші властивості головного вектора і головного моменту системи сил, які мають суттєве теоретичне і практичне значення.

Важливою властивістю головних вектора і моменту системи сил є незалежність їх скалярного добутку від положення точки приведення на тілі.

Дійсно, для будь-якої точки приведення О 1 отримаємо:

. (5.13)

За визначенням вектор і вектор (рис. 5.7) є перпендикулярними. Тому формула (5.13) приводиться, враховуючи що , до виду

. (5.14)

Вираз (5.14), в результаті незалежності головного вектора системи сил від зміни полюса приведення, перетворюється у рівність

, (5.15)

яка і доводить зазначену властивість.

У механіці цю властивість скалярного добутку головного вектора і головного моменту системи сил визначають як другий статичний інваріант (перша форма).

Розглянемо другу форму другого статичного інваріанта системи діючих на тіло сил, які зведено в центрі О до головного вектора і головного моменту .

З векторної алгебри відомо, що за величиною скалярний добуток двох векторів може бути визначеним через проекцію одного з векторів добутку на напрямок іншого:

, (5.16)

де - проекція вектора на напрямок головного вектора .

Тоді з формул (5.15), (5.16) випливає вираз

,

який, з урахуванням рівності першого статичного інваріанта, перетворюється до вигляду

. (5.17)

Співвідношення (5.17) виявляє, що проекція головного моменту систем сил на напрямок її головного вектора не залежить від положення точки приведення. У механіці цю властивість визначають як другий статичний інваріант (друга форма).

 







Дата добавления: 2015-10-15; просмотров: 1344. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия