Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Центри ваги простіших фігур




Розглянемо декілька простих фігур, з яких можуть складатись більш складні фігури.

а) трикутник    
К

 


Рис. 9.12

  Скористаємось способом роз-биття і розділимо трикутник АВД на елементарні смужки, провівши лінії, паралельні стороні АД (рис. 9.12). Кожну таку смужку можна прийняти за прямокутник, центр симетрії якого лежить у середині, тобто на медіані ВК

трикутника. Розглядаючи смужки, паралельні стороні ВД, приходимо до висновку, що центр ваги трикутника має лежати на медіані AL. Отже, центр ваги трикутника знаходиться у точці перетину його медіан. Ця точка, як відомо, ділить кожну із медіан у відношенні 1:2, тобто , .

б) дуга кола

 

 

Рис. 9.13

 

Розглянемо дугу АВ кола радіусом R з центральним кутом (рис. 9.13). Направимо вісь Ох по осі симетрії дуги, яка є бісектрисою кута . Центр ваги дуги кола лежить на осі симетрії, тобто , і залишається знайти . Для цього скористаємось формулою

, (9.19)

яка вийде, якщо у формулі (9.17) перейти до інтеграла. Для елементарної частки довжини , як виходить з рис. 9.13, , , . Тоді

. (9.20)

в) коловий сектор

 

Рис. 9.14

Розглянемо коловий сектор з центральним кутом і радіусом R (рис. 9.14). Направимо вісь Ох по осі симетрії сектора, яка є бісектрисою кута . Центр ваги сектора лежить на осі симетрії, тобто . Розіб’ємо коловий сектор на елементарні сектори (заштрихований на рис. 9.14), кожен з котрих можна прийняти за рівнобедрений трикутник. Отже, центр ваги кожного елементарного трикутника лежить на відстані від початку координат. Геометричним місцем центрів ваги всіх елементарних трикутників буде дуга кола радіусом . У цьому випадку можна скористатись формулою для центра ваги дуги кола (9.20):

. (9.21)

Зауваження. У формулах (9.20), (9.21) кут треба брати в радіанах.

 







Дата добавления: 2015-10-15; просмотров: 183. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2019 год . (0.002 сек.) русская версия | украинская версия