Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Центри ваги простіших фігур





Розглянемо декілька простих фігур, з яких можуть складатись більш складні фігури.

а) трикутник    
К

 


Рис. 9.12

  Скористаємось способом роз-биття і розділимо трикутник АВД на елементарні смужки, провівши лінії, паралельні стороні АД (рис. 9.12). Кожну таку смужку можна прийняти за прямокутник, центр симетрії якого лежить у середині, тобто на медіані ВК

трикутника. Розглядаючи смужки, паралельні стороні ВД, приходимо до висновку, що центр ваги трикутника має лежати на медіані AL. Отже, центр ваги трикутника знаходиться у точці перетину його медіан. Ця точка, як відомо, ділить кожну із медіан у відношенні 1:2, тобто , .

б) дуга кола

 

 

Рис. 9.13

 

Розглянемо дугу АВ кола радіусом R з центральним кутом (рис. 9.13). Направимо вісь Ох по осі симетрії дуги, яка є бісектрисою кута . Центр ваги дуги кола лежить на осі симетрії, тобто , і залишається знайти . Для цього скористаємось формулою

, (9.19)

яка вийде, якщо у формулі (9.17) перейти до інтеграла. Для елементарної частки довжини , як виходить з рис. 9.13, , , . Тоді

. (9.20)

в) коловий сектор

 

Рис. 9.14

Розглянемо коловий сектор з центральним кутом і радіусом R (рис. 9.14). Направимо вісь Ох по осі симетрії сектора, яка є бісектрисою кута . Центр ваги сектора лежить на осі симетрії, тобто . Розіб’ємо коловий сектор на елементарні сектори (заштрихований на рис. 9.14), кожен з котрих можна прийняти за рівнобедрений трикутник. Отже, центр ваги кожного елементарного трикутника лежить на відстані від початку координат. Геометричним місцем центрів ваги всіх елементарних трикутників буде дуга кола радіусом . У цьому випадку можна скористатись формулою для центра ваги дуги кола (9.20):

. (9.21)

Зауваження. У формулах (9.20), (9.21) кут треба брати в радіанах.

 







Дата добавления: 2015-10-15; просмотров: 435. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия