Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Центр паралельних сил і центр ваги





 

Центр паралельних сил

 

Розглянемо дві паралельні сили и , направлені в один бік (рис. 9.1). Згідно з п. 4.4.1 така система сил зводиться до рівнодійної . При цьому виконуються співвідношення:

   
           
     

 


Рис. 9.1

, . (9.1) Якщо сили и повернути на однаковий кут навколо точок їх прикладання А і В, то рівнодійна повернеться на той самий кут навколо точки

С, оскільки співвідношення (9.1) не зміняться. Такі ж міркування можна привести і для двох паралельних сил, направлених у різні боки.

Точка С, через яку проходить лінія дії рівнодійної системи паралельних сил при будь-яких поворотах цих сил навколо точок їх прикладання на однаковий кут, називається центром паралельних сил.

У яких випадках існує така точка С і як знайти їх координати? На це запитання дає відповідь теорема про центр паралельних сил.

Теорема. Якщо головний вектор системи паралельних сил не дорівнює нулю, то центр паралельних сил (точка С) існує і його положення визначається за формулою

, (9.2)

де - радіуси-вектори точок прикладання сил; - радіус-вектор центра паралельних сил; - модулі паралельних сил, які відрізняються знаком для сил, направлених у різні боки.

Доведення. Розглянемо систему п паралельних сил . Якщо її головний вектор не дорівнює нулю, то, як показано у п. 5.4.4.3, така система паралельних сил зводиться до рівнодійної . Нехай точка - це якась точка лінії дії цієї рівнодійної (рис. 9.2), - відповідно радіуси-вектори точки і точок прикладання сил і відносно вибраного центра О.

    Рис. 9.2 Згідно з теоремою Варіньона про момент рівнодійної (п. 5.6), отримаємо або або . (9.3) Рівність (9.3) запишемо у наступній формі

. (9.4)

Введемо у розгляд одиничний вектор , паралельний лініям дії сил . Тоді кожна із заданої системи сил може бути виражена через вектор :

, (9.5)

де , якщо напрями векторів и збігаються, і , якщо ці напрями протилежні. При цьому очевидно, що

. (9.6)

Підставляючи (9.5) і (9.6) у рівняння (9.4), отримаємо:

,

або .

Остання рівність виконується при будь-якому напрямі сил (напрямі вектора ) тільки за умовою, що перший множник дорівнює нулю:

. (9.7)

Ця рівність має єдиний розв’язок відносно радіуса-вектора , який визначає точку прикладання рівнодійної. Такою точкою і є центр паралельних сил, чим доводиться його існування. Позначимо радіус-вектор центра паралельних сил як . Тоді з рівняння (9.7) отримаємо вираз:

Теорему доведено.

Формулу (9.2) можна подати у скалярній формі:

, , , (9.9)

де - відповідно декартові координати центра с паралельних сил і точок прикладання сил .

Вирази , , у формулах (9.9) називаються відповідно статичними моментами заданої системи сил відносно координатних площин уOz, xOz, xOy. Зазначимо, що коли початок координат сумістити з центром паралельних сил, то

і статичні моменти заданої системи сил дорівнюватимуть нулю.

 







Дата добавления: 2015-10-15; просмотров: 549. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия