Центр паралельних сил і центр ваги
Центр паралельних сил
Розглянемо дві паралельні сили и , направлені в один бік (рис. 9.1). Згідно з п. 4.4.1 така система сил зводиться до рівнодійної . При цьому виконуються співвідношення:
Рис. 9.1 | , . (9.1) Якщо сили и повернути на однаковий кут навколо точок їх прикладання А і В, то рівнодійна повернеться на той самий кут навколо точки |
С, оскільки співвідношення (9.1) не зміняться. Такі ж міркування можна привести і для двох паралельних сил, направлених у різні боки.
Точка С, через яку проходить лінія дії рівнодійної системи паралельних сил при будь-яких поворотах цих сил навколо точок їх прикладання на однаковий кут, називається центром паралельних сил.
У яких випадках існує така точка С і як знайти їх координати? На це запитання дає відповідь теорема про центр паралельних сил.
Теорема. Якщо головний вектор системи паралельних сил не дорівнює нулю, то центр паралельних сил (точка С) існує і його положення визначається за формулою
, (9.2)
де - радіуси-вектори точок прикладання сил; - радіус-вектор центра паралельних сил; - модулі паралельних сил, які відрізняються знаком для сил, направлених у різні боки.
Доведення. Розглянемо систему п паралельних сил . Якщо її головний вектор не дорівнює нулю, то, як показано у п. 5.4.4.3, така система паралельних сил зводиться до рівнодійної . Нехай точка - це якась точка лінії дії цієї рівнодійної (рис. 9.2), - відповідно радіуси-вектори точки і точок прикладання сил і відносно вибраного центра О.
Рис. 9.2 | Згідно з теоремою Варіньона про момент рівнодійної (п. 5.6), отримаємо або або . (9.3) Рівність (9.3) запишемо у наступній формі |
. (9.4)
Введемо у розгляд одиничний вектор , паралельний лініям дії сил . Тоді кожна із заданої системи сил може бути виражена через вектор :
, (9.5)
де , якщо напрями векторів и збігаються, і , якщо ці напрями протилежні. При цьому очевидно, що
. (9.6)
Підставляючи (9.5) і (9.6) у рівняння (9.4), отримаємо:
,
або .
Остання рівність виконується при будь-якому напрямі сил (напрямі вектора ) тільки за умовою, що перший множник дорівнює нулю:
. (9.7)
Ця рівність має єдиний розв’язок відносно радіуса-вектора , який визначає точку прикладання рівнодійної. Такою точкою і є центр паралельних сил, чим доводиться його існування. Позначимо радіус-вектор центра паралельних сил як . Тоді з рівняння (9.7) отримаємо вираз:
Теорему доведено.
Формулу (9.2) можна подати у скалярній формі:
, , , (9.9)
де - відповідно декартові координати центра с паралельних сил і точок прикладання сил .
Вирази , , у формулах (9.9) називаються відповідно статичними моментами заданої системи сил відносно координатних площин уOz, xOz, xOy. Зазначимо, що коли початок координат сумістити з центром паралельних сил, то
і статичні моменти заданої системи сил дорівнюватимуть нулю.
Дата добавления: 2015-10-15; просмотров: 549. Нарушение авторских прав; Мы поможем в написании вашей работы! |
|
|
|
|
Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...
|
ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, новогаленовые препараты, жидкие органопрепараты и жидкие экстракты, а также порошки и таблетки для имплантации...
|