Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Центр паралельних сил і центр ваги





 

Центр паралельних сил

 

Розглянемо дві паралельні сили и , направлені в один бік (рис. 9.1). Згідно з п. 4.4.1 така система сил зводиться до рівнодійної . При цьому виконуються співвідношення:

   
           
     

 


Рис. 9.1

, . (9.1) Якщо сили и повернути на однаковий кут навколо точок їх прикладання А і В, то рівнодійна повернеться на той самий кут навколо точки

С, оскільки співвідношення (9.1) не зміняться. Такі ж міркування можна привести і для двох паралельних сил, направлених у різні боки.

Точка С, через яку проходить лінія дії рівнодійної системи паралельних сил при будь-яких поворотах цих сил навколо точок їх прикладання на однаковий кут, називається центром паралельних сил.

У яких випадках існує така точка С і як знайти їх координати? На це запитання дає відповідь теорема про центр паралельних сил.

Теорема. Якщо головний вектор системи паралельних сил не дорівнює нулю, то центр паралельних сил (точка С) існує і його положення визначається за формулою

, (9.2)

де - радіуси-вектори точок прикладання сил; - радіус-вектор центра паралельних сил; - модулі паралельних сил, які відрізняються знаком для сил, направлених у різні боки.

Доведення. Розглянемо систему п паралельних сил . Якщо її головний вектор не дорівнює нулю, то, як показано у п. 5.4.4.3, така система паралельних сил зводиться до рівнодійної . Нехай точка - це якась точка лінії дії цієї рівнодійної (рис. 9.2), - відповідно радіуси-вектори точки і точок прикладання сил і відносно вибраного центра О.

    Рис. 9.2 Згідно з теоремою Варіньона про момент рівнодійної (п. 5.6), отримаємо або або . (9.3) Рівність (9.3) запишемо у наступній формі

. (9.4)

Введемо у розгляд одиничний вектор , паралельний лініям дії сил . Тоді кожна із заданої системи сил може бути виражена через вектор :

, (9.5)

де , якщо напрями векторів и збігаються, і , якщо ці напрями протилежні. При цьому очевидно, що

. (9.6)

Підставляючи (9.5) і (9.6) у рівняння (9.4), отримаємо:

,

або .

Остання рівність виконується при будь-якому напрямі сил (напрямі вектора ) тільки за умовою, що перший множник дорівнює нулю:

. (9.7)

Ця рівність має єдиний розв’язок відносно радіуса-вектора , який визначає точку прикладання рівнодійної. Такою точкою і є центр паралельних сил, чим доводиться його існування. Позначимо радіус-вектор центра паралельних сил як . Тоді з рівняння (9.7) отримаємо вираз:

Теорему доведено.

Формулу (9.2) можна подати у скалярній формі:

, , , (9.9)

де - відповідно декартові координати центра с паралельних сил і точок прикладання сил .

Вирази , , у формулах (9.9) називаються відповідно статичними моментами заданої системи сил відносно координатних площин уOz, xOz, xOy. Зазначимо, що коли початок координат сумістити з центром паралельних сил, то

і статичні моменти заданої системи сил дорівнюватимуть нулю.

 







Дата добавления: 2015-10-15; просмотров: 549. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия