Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклад 3.





В основі піраміди лежить прямокутний трикутник . Ребро перпендикулярно площині основи, . Через середину ребра перпендикулярно до ребра проведемо січну площину і знайдемо площу отриманого перерізу.

Побудуємо зображення.

Нехай чотирикутник з його діагоналями і являється зображенням даної піраміди (мал.).

1) медіана трикутника ,

2) точка - середина ребра ,

3) ,

4) - медіана трикутника ,

5) .

Для того щоб побудувати , спочатку побудуємо . Зазначимо, що в прямокутному трикутнику і тому . Тоді з трикутника , де , знаходимо, що . Таким чином, для того щоб відрізок було зображенням перпендикуляра до ребра , повинна виконуватись рівність:

, або , звідси знаходимо, що , тобто .

Далі ми продовжимо побудову в такій послідовності:

6) точка така, що ,

7) ,

8) ,

9) .

Доведемо, що площина чотирикутника перпендикулярна ребру . Дійсно, , тобто . Крім того, за побудовою . Тоді і . Далі і , тобто . Таким чином, переріз задовільняє умовам залачі і, тому, являється шуканим.

Зрозуміло, що так як січна площина перпендикулярна даній прямій і проходить через дану точку, яка належить поверхні піраміди, визначена цими умовами, існує і при тому тільки одна.

Побудову зображення закінчено, і можна перейти до подальших етапів розв’язання.

Дано:

- піраміда, - вершина, , , , , - переріз піраміди, .

Знайти:

Розв’язання:

Для того щоб розрахувати дану площу, визначимо спочатку вид чотирикутника .

З прямокутних трикутників і маємо відповідно:

і .

Але . Таким чином, .

Оскільки , то - проекція ребра на площину . Але . Тоді і .

З подібності трикутників і

,

звідси .

З подібності трикутників і

,

звідси .

Але , тобто , а тоді .

Таким чином, чотирикутник має ту особливість, що в нього

Далі не важко побачити, що трикутники і і тому . Але і , тобто .

Звідси, ,

а тоді, .








Дата добавления: 2015-10-15; просмотров: 435. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия