Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства коэффициентов Фурье





Коэффициенты ряда Фурье обладают рядом важных свойств.

1. Если имеет период (например, рис. 11.1), то коэффициенты ряда Фурье для нее вычисляются по следующим формулам

, , .

ƒ Известны свойства периодических функций

а) ;

б) ;

в) .

Тогда доказываемые формулы получаются, если в них положить , . <

2. Если четная функция, то для .

Если нечетная функция, то , для .

ƒ По определению: четная функция удовлетворяет условию , а нечетная . Известно, что:

а) если , четные функции, то – четная;

б) если нечетная, а четная, то – нечетная;

в) если и нечетная, то – четная.

Тогда, если – четная, то – нечетная, т.к. нечетная.

.

Таким образом, . Аналогично доказывается, что если нечетная, то . <

Из этого свойства следует, что тригонометрический ряд Фурье для четных функций имеет вид

,

где , ,

Для нечетных функций тригонометрический ряд Фурье соответственно имеет вид

,

где ,

Сделанные выводы сохраняются для тригонометрических рядов по системе общего вида. Для четной функции:

,

где , .

Для нечетной функции:

,

где .

3. Лемма Римана. Если кусочно-непрерывная функция на , то , .

ƒ Пусть , , …, точки разрыва функции . Для доказательства достаточно показать, что интегралы от функции и по каждому из отрезков , , …, стремятся к нулю при . Пусть один из таких отрезков, непрерывна на . Покажем, что .

Функция непрерывна на , следовательно, она ограничена

для (24)

и по теореме Кантора равномерно непрерывна. Следовательно, для такое, что для выполняется , тогда

для . (25)

Зададим и выберем на с шагом разбиение так, чтобы , и .

Произведем оценку интеграла:

.

Так как , то из (24) и (25) имеем

,

при .

Откуда следует, что при имеем

, т.е. . <

Тогда, очевидно, что для кусочно-непрерывной на функции

.

Последнее следует из формул (23).

Пример 25. Разложить в ряд Фурье двумя способами функцию, представленную на рис. 11.2 по косинусам и по синусам.

Решение.

а) Разложение в ряд по косинусам. Продолжим , как показано на рис. 11.3, получим четную функцию , определенную на и совпадающую с на .

Вычислим коэффициенты ряда Фурье, учитывая, что

.

.

Разложение будет иметь вид

.

б) Разложение в ряд по синусам. Продолжим , как показано на рис. 11.4, получим функцию , определенную на и совпадающую с на .

Вычислим коэффициенты ряда Фурье. Так как получившаяся функция нечетная, то

.

Получаем выражение для ряда Фурье заданной функции

.







Дата добавления: 2015-10-15; просмотров: 1839. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия