Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. Для наглядного представления сложной системы как совокупности элементов и связей между ними используются структурные схемы.





Для наглядного представления сложной системы как совокупности элементов и связей между ними используются структурные схемы.

Структурной схемой называется схема САУ, изображенная в виде соединения ПФ составляющих ее звеньев.

Структурная схема показывает строение автоматической системы, наличие внешних воздействий и точки их приложения, пути распространения воздействий и выходную величину. Динамическое или статическое звено изображается прямоугольником, в котором указывается ПФ звена или ее математическое выражение. Воздействия на систему и влияние звеньев друг на друга (сигналы) изображаются стрелками. В каждом звене воздействие передается только от входа звена к его выходу.

На динамическое звено может воздействовать лишь одна входная величина, поэтому используются блоки суммирования и сравнения сигналов. Суммироваться и сравниваться могут лишь сигналы одной и той же физической природы.

Структурная схема может быть составлена по уравнению системы в пространстве состояний или по дифференциальным уравнениям системы. При составлении структурной схемы удобно начинать с изображения задающего воздействия и располагать динамические звенья, составляющие прямую цепь системы, слева направо до регулируемой величины. Тогда основная обратная связь и местные обратные связи будут направлены справа налево.

Различные способы преобразования структурных схем облегчают определение ПФ сложных САУ и дают возможность привести многоконтурную систему к эквивалентной ей одноконтурной схеме.

Преобразование структурной схемы должно осуществляться на основании правил. Правила преобразования структурных схем можно найти в справочной литературе [1, 2], основные из них приведены в табл. 2.1.

Таблица 2.1

Преобразование Структурная схема
Исходная Эквивалентная
Свертывание последовательного соединения
Свертывание параллельного соединения
Свертывание обратной связи
Перенос узлачерез звено вперед
Перенос узла через звено назад
Перенос сумматорачерез звено вперед
Перенос сумматорачерез звено назад
Перенос прямой связи через звено
Перенос узла через сумматор
Перенос узла через сумматор назад

 

При выполнении преобразований следует каждое имеющееся в схеме типовое соединение заменить эквивалентным звеном. Затем можно выполнить перенос точек разветвления и сумматоров, чтобы в преобразованной схеме образовались новые типовые соединения звеньев. Эти соединения опять заменяются эквивалентными звенья ми, затем вновь может потребоваться перенос точек разветвления и сумматоров и т. д.

Пример. Пусть необходимо получить эквивалентное представление для структуры, приведенной на рис. 2.1.

Рис. 2.1. Исходная структура САУ

 

Преобразование включает несколько этапов, показанных на рис.2.2-2.5.

 

Рис. 2.2. Перенос узла через сумматор

 

 

Рис. 2.3. Свертывание обратной связи и последовательного соединения

 

Рис. 2.4. Свертывание обратной связи и параллельного соединения

 

 

 

Рис. 2.5. Свертывание последовательного соединения

Таким образом, первый способ преобразования структурных схем заключается в непосредственном использовании правил, приведенных в табл.2.1. Неудобство использования этого подхода заключается в том, что порядок применения формул здесь достаточно произволен, возможны ошибочные шаги, усложняющие поиск решения.

Второй способ для получения ПФ многоконтурной системы заключается в использовании модели системы в виде сигнального графа.

Сигнальный граф позволяет графически описать линейные связи между переменными, он состоит из узлов (вершин) и соединяющих их направленных ветвей.

Ветвь соответствует блоку структурной схемы, она отражает зависимость между входной и выходной переменными. Сумма всех сигналов, входящих в узел, образует соответствующую этому узлу переменную.

Последовательность ветвей между двумя узлами называется путем. Контуром называется замкнутый путь, который начинается и заканчивается в одном и том же узле, причем ни один узел не встречается на этом пути дважды. Коэффициент передачи контура - это произведение всех входящих в него дуг.

Контуры называются не касающимися, если они не имеют общих узлов.

Сигнальный граф однозначно соответствует структурной схеме.

Пусть X(s) и Y(s) - входная и выходная переменные системы. Тогда для вычисления ПФ системы управления по ее графу можно воспользоваться формулой Мейсона:

где i -й путь от входа к выходу; N - количество путей; - определитель графа; - дополнительный множитель для пути.

Определитель графа получается по формуле:

где - сумма коэффициентов передачи всех отдельных контуров;

- сумма произведений всех возможных комбинаций из двух не касающихся контуров;

- сумма произведений всех возможных комбинаций из трех некасающихся контуров.

Дополнительный множитель для i -го пути равен определителю графа, в котором приравнены нулю коэффициенты передачи контуров, касающихся этого пути.

Рассмотрим пример получения ПФ многоконтурной системы с использованием формулы Мейсона для структуры рис. 1, которой соответствует граф, показанный на рис. 2.6.

От входа к выходу ведут два пути:

Рис. 2.6. Описание системы управления сигнальным графом

 

 

В графе есть два контура:

 

 

Контур касается контура , поэтому определитель графа вычисляется по формуле:

 

Контуры в этом примере касаются всех путей, поэтому дополнительные множители путей

Окончательно можно записать:

 

 

Таким образом, использование сигнальных графов и применение формулы Мейсона позволяет алгоритмизировать процесс упрощения структурной схемы.

 







Дата добавления: 2015-10-15; просмотров: 1382. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия