Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость и вогнутость кривых. Точки перегиба





График функции y=f(x) называется выпуклым (вогнутым) в интервале (а, в), если точки кривой расположены ниже (выше) касательной, проведенной в любой ее точке этого интервала.

Точка, отделяющая выпуклую часть графика функции от вогнутой части, называется точкой перегиба.

Теорема 1. Если во всех точках интервала (а, в) вторая производная функции f(x) отрицательна, т.е. f" (x) , то кривая y=f(x) в этом интервале выпуклая. Если же во всех точках интервала (а, в) f" (x)> 0, то кривая в этом интервале вогнутая.

Следовательно, точки перегиба функции y=f(x) следует искать среди точек, в которых либо f" (x)=0, либо f" (x)=∞.

Теорема 2. Пусть для функции y=f(x) ее вторая производная f" (x) существует в некоторой окрестности точки за исключением, быть может, самой точки . Если при переходе x через точку f" (x) меняет знак на противоположный, то точка является точкой перегиба графика функции y=f(x). Если же f" (x) в окрестности сохраняет знак, то перегиба в точке нет.

Пример. Найти интервалы выпуклости и вогнутости и точки перегиба графика функции.

Решение.

Область определения функции – вся числовая ось: (-∞; ∞).

Находим производные:

y’=

Решим уравнение: , т.е.

Исследуем знаки :

В интервалах и f" (x)> 0 следовательно в этих интервалах кривая вогнута, в интервале f" (x)< 0=> в этом интервале кривая выпуклая.

Точки и - точки перегиба, их координаты

т.е.

А(-2; -124) и В( - точки перегиба.

Решить самостоятельно. Для данных функций найти

a) интервалы монотонности и экстремумы и

b) интервалы выпуклости, вогнутости и точки перегиба:

1) 2) 3)

4) 5) 6)

6.7. Наибольшее и наименьшее значения функции на отрезке.

Если функция y=f(x) непрерывна на отрезке , то она достигает на нем своего наибольшего и наименьшего значений (теорема Вейерштрасса). Эти значения достигаются функцией либо в точках экстремума, находящихся внутри отрезка, либо на его концах.

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке надо вычислить значения функции во всех критических точках, принадлежащих интервалу (а, в), значения f (a), f (b) на концах отрезка и взять наибольшее и наименьшее из полученных чисел.

Пример. Наибольшее и наименьшее значения функции на отрезке

Решение.

. Находим критические точки:

. Точка не принадлежит отрезку . Вычисляем значение функции в критической точке x = -1:

Находим значение функции на концах отрезка:

;

Из трех полученных значений выбираем самое большое и самое меньшее:

Решить самостоятельно. Найти наибольшее и наименьшее значения функции на заданном отрезке:

1) 2)

3) ; 4)







Дата добавления: 2014-12-06; просмотров: 975. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия