Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклость и вогнутость кривых. Точки перегиба





График функции y=f(x) называется выпуклым (вогнутым) в интервале (а, в), если точки кривой расположены ниже (выше) касательной, проведенной в любой ее точке этого интервала.

Точка, отделяющая выпуклую часть графика функции от вогнутой части, называется точкой перегиба.

Теорема 1. Если во всех точках интервала (а, в) вторая производная функции f(x) отрицательна, т.е. f" (x) , то кривая y=f(x) в этом интервале выпуклая. Если же во всех точках интервала (а, в) f" (x)> 0, то кривая в этом интервале вогнутая.

Следовательно, точки перегиба функции y=f(x) следует искать среди точек, в которых либо f" (x)=0, либо f" (x)=∞.

Теорема 2. Пусть для функции y=f(x) ее вторая производная f" (x) существует в некоторой окрестности точки за исключением, быть может, самой точки . Если при переходе x через точку f" (x) меняет знак на противоположный, то точка является точкой перегиба графика функции y=f(x). Если же f" (x) в окрестности сохраняет знак, то перегиба в точке нет.

Пример. Найти интервалы выпуклости и вогнутости и точки перегиба графика функции.

Решение.

Область определения функции – вся числовая ось: (-∞; ∞).

Находим производные:

y’=

Решим уравнение: , т.е.

Исследуем знаки :

В интервалах и f" (x)> 0 следовательно в этих интервалах кривая вогнута, в интервале f" (x)< 0=> в этом интервале кривая выпуклая.

Точки и - точки перегиба, их координаты

т.е.

А(-2; -124) и В( - точки перегиба.

Решить самостоятельно. Для данных функций найти

a) интервалы монотонности и экстремумы и

b) интервалы выпуклости, вогнутости и точки перегиба:

1) 2) 3)

4) 5) 6)

6.7. Наибольшее и наименьшее значения функции на отрезке.

Если функция y=f(x) непрерывна на отрезке , то она достигает на нем своего наибольшего и наименьшего значений (теорема Вейерштрасса). Эти значения достигаются функцией либо в точках экстремума, находящихся внутри отрезка, либо на его концах.

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке надо вычислить значения функции во всех критических точках, принадлежащих интервалу (а, в), значения f (a), f (b) на концах отрезка и взять наибольшее и наименьшее из полученных чисел.

Пример. Наибольшее и наименьшее значения функции на отрезке

Решение.

. Находим критические точки:

. Точка не принадлежит отрезку . Вычисляем значение функции в критической точке x = -1:

Находим значение функции на концах отрезка:

;

Из трех полученных значений выбираем самое большое и самое меньшее:

Решить самостоятельно. Найти наибольшее и наименьшее значения функции на заданном отрезке:

1) 2)

3) ; 4)







Дата добавления: 2014-12-06; просмотров: 975. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия