Пространственные кривые
Кривую, точки которой не лежат в одной плоскости, называют пространственной или линией двоякой кривизны. Пространственные кривые так же, как и плоские, могут быть закономерными или общего вида. К закономерным относятся винтовые линии (гелисы), которые широко применяются в технике, являясь определяющими поверхностей резьбы, червяков, пружин и т.п. Название винтовой линии определяется видом поверхности, по которой движется точка, образующая гелису. Цилиндрическая винтовая линия. Цилиндрическая винтовая линия представляет собой траекторию точки, равномерно движущейся по образующей цилиндра, которая, в свою очередь, равномерно вращается вокруг оси цилиндра.
Рис. 6.4. Особые точки на линии
Основными параметрами этой кривой являются: диаметр окружности цилиндра, шаг р винтовой линии, направление винтовой линии и угол подъема y. Шагом р называется расстояние, пройденное точкой по образующей цилиндра за один полный оборот по окружности. Шаг может быть постоянным и переменным. Если винтовая линия поднимается по видимой стороне цилиндра слева на право, то она правая. Угол подъема винтовой линии выражается формулой:
tg y= р/pd
где: р – шаг винтовой линии; d – диаметр основания цилиндра. Для построения проекций винтовой цилиндрической линии шаг (высота цилиндра) и окружность основания делятся на одинаковое число (n) равных частей. На рисунке 6.5 n=12. При перемещении на 1/12 часть по окружности точка переместится на (1/12) р (шага) по образующей цилиндра. Таким образом, фронтальные проекции точек гелисы получаются при пересечении горизонтальных прямых деления шага с линиями проекционной связи, проведенными из соответствующих точек деления окружности (см. рис.6.5). Так как ось цилиндра является горизонтально-проецирующей прямой, то горизонтальная проекция гелисы совпадает с окружностью основания цилиндра. Фронтальная проекция цилиндрической винтовой линии - синусоида.
Рис. 6.5. Цилиндрическая винтовая линия и ее развертка
Разверткой гелисы является гипотенуза прямоугольного треугольника, один из катетов которого равен шагу р, а второй – длине окружности основания цилиндра pd. Из этого треугольника определяется и угол y. Винтовая линия является линией кратчайших расстояний между двумя точками на поверхности цилиндра.
|