Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сферические функции





Сферические функции проще всего могут быть введены при решении уравнения Лапласа для шаровой области методом разделения переменных. Разделение переменных в уравнении Лапласа в сферических координатах:

,

,

где - угловая часть, - радиальная часть оператора Лапласа в сферических координатах.

, (1)

. (2)

Решение уравнения Лапласа для функции ищем в виде:

, (3)

,

. (4)

Для определения R (r) получаем уравнение Эйлера:

, (5)

где - константа разделения.

Для определения получаем уравнение

. (6)

Из условия ограниченности функции на сфере любого радиуса следует, что функция должна удовлетворять условиям , , а также .

Ограниченное решение уравнения (6), обладающие непрерывными производными до второго порядка, называются сферическими функциями.

Решение задачи для ищем также методом разделения переменных, полагая

. (7)

Функция удовлетворяет уравнению

.

Умножим на и поделим на (7)

,

, (8)

где m -константа разделения. Из (8) следует, что

. (9)

Задача для с условием периодичности имеет решение лишь при целом m, и линейно независимыми решениями являются функции и .

Функция определяется из уравнения и условий ограниченности при и :

, (10)

, (11)

, (12)

определенная в (12) есть решение (9).

Если потребовать выполнение условия

,

m -любое число m =0, 1, -1, 2, -2…

,

, m =0, 1, -1. (14)

Выберем новую переменную и обозначая , получаем для уравнение присоединенных функций (15):

,

,

подставляем все в (10)

,

. (15)

Полученное уравнение является уравнением для присоединенных функций Лежандра

.

Потребуем, чтобы функции были нормированными

,

,

, (16)

, (17)

где , .

. (18)

Уравнение (6) имеет решение (18) при собственных значениях . Найдем несколько сферических функций

,

.

Легко проверить, что сферические функции являются ортонормированными, т.е. справедливо:

,

,

,

.

Кроме сферических функций используется понятие сферических гармоник, которые определяется следующим образом как линейная комбинация (2 l +1) сферических функций:

,

Решение уравнения имеет вид:

.

Специфика заключается в нахождении радиальной части волновой функции R (r). Найдем решение уравнения Эйлера:

,

,

,

,

,

.

Тогда , есть решение для внутренней краевой задачи, а есть решение для внешней краевой задачи.

 







Дата добавления: 2014-11-10; просмотров: 1029. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия