Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции Чебышева-Эрмита





В приложениях часто пользуются функциями Чебышева-Эрмита

(14)

образующими ортогональную и нормированную с весом систему на бесконечном интервале < x< :

. (15)

Эти функции обращаются в нуль при и удовлетворяют уравнению

при .

,

,

,

В результате мы получили уравнение для

, (16)

где .

 

Полиномы Чебышева-Лагерра

Дифференциальная формула

Полиномы Чебышева-Лагерра определим при помощи производящей функции

. (1)

Разложим ее в степенной ряд

, . (2)

и пользуясь теоремой Коши, находим

, (3)

где C -контур, охватывающий точку . Введем новую переменную интегрирования z, положив , ; тогда

,

, (4)

где C 1-контур, охватывающий точку z = x. Используя теорию вычетов, получаем дифференциальную формулу для полиномов Чебышева-Лагерра

. (5)

Отсюда видно, что есть многочлен степени n.

 







Дата добавления: 2014-11-10; просмотров: 1105. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия