Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краевые задачи для уравнения Бесселя





Простейшая краевая задача для уравнения Бесселя на отрезке [0, r0] связана с задачей о собственных колебаниях круглой мембраны

, , (1)

, , . (2)

Полагая и разделяя переменные, получаем

,

, (3)

, . (4)

Условие периодичности для Ф(φ) дает v = n2, где п — целое число. Таким образом, функция R(r) должна определяться из уравнения Бесселя

,

домножим на r

, (5)

при граничном условии

, (6)

и естественном граничном условии ограниченности в точке r =0

. (7)

Полагая

, (8)

,

,

,

, ,

, ,

,

приходим к уравнению

, , (9)

при дополнительных условиях

, (10)

. (11)

Отсюда находим

. (12)

В силу граничного условия имеем:

, (13)

Это трансцендентное уравнение имеет бесчисленное множество вещественных корней , т. е. уравнение (1) имеет бесчисленное множество собственных значений

(14)

которым соответствуют собственные функции

(15)

краевой задачи (5)-(7).

Из способа построения собственных функций видно, что всякое нетривиальное решение рассматриваемой краевой задачи дается формулой (15).

Из общей теории уравнений вида

,

следует ортогональность системы собственных функций

с весом r:

при . (16)

Вычислим норму собственных функций , где .Попутно будет получено условие ортогональности (16). Для этого рассмотрим функцию , где α 2 — произвольный параметр.

Функции R1(r) и R2(r) удовлетворяют уравнениям

,

,

причем R 1(r o)= 0, a R 2(r)уже не удовлетворяет этому граничному условию. Вычитая из первого уравнения второе, предварительно умножив их, соответственно, на R 2(r) и R 1(r), и интегрируя затем по r в пределах от 0 до r0, будем иметь

,

откуда находим

,

. (17)

Переходя к пределу при и раскрывая неопределенность в правой части, получаем выражение для квадрата нормы:

,

,

или

. (18)

В частности, квадрат нормы функции равен

.

Если положить , то из формулы (17) сразу следует условие (16) ортогональности функций Бесселя.

Отметим, что имеются таблицы нулей функции и соответствующих им значений . Приведем несколько первых значений :

, , , .

С возрастанием номера m нуля разность должна стремиться к π;. Это можно проследить даже для нескольких первых значений (например, , , и т.д.) .

В силу общих свойств собственных функций краевых задач имеет место теорема разложимости:

всякая дважды дифференцируемая функция f(r), ограниченная при r = 0 и обращающаяся в нуль при r=r0, может быть разложена в абсолютно и равномерно сходящийся ряд

,

где

,

где

.

Вторая краевая задача для уравнения Бесселя:

, ,

,

решается аналогично. Собственные функции и собственные значения также будут выражаться формулами (15) и (14), где под следует понимать корень номера m уравнения

.

Собственные функции задачи ортогональны между собой с весом r и имеют квадрат нормы, равный

.

Аналогично решается и третья краевая задача. В этом случае для определения получается уравнение вида

.







Дата добавления: 2014-11-10; просмотров: 1339. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия