Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции мнимого аргумента





Цилиндрические функции можно рассматривать не только при действительных, но и при комплексных значениях аргумента. Рассмотрим цилиндрические функции 1-го рода от чисто мнимого аргумента.

Подставляя в ряд, определяющий J ν (x), значение ix вместо x, получаем

, (15)

где

(16)

- вещественная функция, связанная с J ν (ix) соотношением

, или .

В частности, при ν =0

(17)

Из ряда (16) видно, что I ν (x) являются монотонно возрастающими функциями, имеющими при x= 0 нуль ν -го порядка. Пользуясь асимптотической формулой (5), получим, что для I ν (x) должна иметь место асимптотическая формула

, (18)

при больших значениях аргумента x.

Аналогично вводится I -ν (x). Функции I ν и I -ν при нецелом ν линейно независимы, так как в точке x=0 при ν > 0 функция I ν (x) имеет нуль ν -го порядка, а I -ν (x) – полюс x =0. Если ν =n – целое число, то I -n(x) = I n(x).

Цилиндрические функции мнимого аргумента являются решениями уравнения

(19)

и, в частности, функция I 0(x) удовлетворяет уравнению

. (20)

Наряду с функцией I ν (x) рассматривают функцию Макдональда K ν (x), определяемую с помощью функции Ханкеля чисто мнимого аргумента

. (21)

K ν (x) является вещественной функцией x. Формула (12) и (13) дают

при ν ≠ n,

. (22)

Пользуясь асимптотическим выражением для , находим:

(23)

Формулы (23) и (18) показывают, что K ν (x) экспоненциально убывают, а I ν (x) экспоненциально возрастают при x→ . Отсюда следует линейная независимость этих функций, а также возможность представлений любого решения уравнения (19) в виде линейной комбинации

.

В частности, если y ограничено на бесконечности, то A =0 и B =0 и y = AI ν (x).

Из линейной независимости I ν и K ν следует, что K ν (x) имеет в точке x =0 полюс ν -го порядка (K ν (x) ) при ν ≠ 0 и логарифмическую особенность при ν = 0.

при x → 0.

Наиболее важное значение имеет функция

. (23)

 







Дата добавления: 2014-11-10; просмотров: 731. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия