Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции Ханкеля и Неймана





Как было отмечено в п.3.1, всякое решение уравнения Бесселя нецелого порядка выражается через функции , . Установим связь между функциями , , , , .

Так как всякое решение уравнения Бесселя при нецелом можно представить в виде линейной комбинации функций и , то

, (9)

где и -постоянные, подлежащие определению. Для главных членов асимптотических разложений, очевидно, имеет место аналогичное равенство:

. (10)

Преобразуем аргумент второго слагаемого к виду :

Сокращаем обе части уравнения (10) на и пользуясь формулой Эйлера для левой части, получаем:

откуда

,

или

(11)

,

.

Подставляя (11) в (9), находим

. (12)

Аналогично,

. (13)

.

Пользуясь формулой , определяющей , получаем из (12) и (13):

. (14)

Формулы (12), (13) и (14) получены нами для нецелых значений v. Для целого значения функции Ханкеля и Неймана могут быть определены из (12), (13) и (14) с помощью предельного перехода при . Переходя в этих формулах к пределу при и раскрывая неопределенность по известному правилу, будем иметь

,

,

.

Пользуясь представлением функций и в виде степенных рядов, можно получить аналогичные представления для , а также и .

Формулы (12) и (13) можно рассматривать как аналитическое определение функций Ханкеля. Существуют, однако, и другие способы введения функций Ханкеля.

Если , то функции Ханкеля и Неймана выражаются в конечном виде через элементарные функции. В частности, при имеем:

,

 







Дата добавления: 2014-11-10; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия