Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов. Параметры a1, a2 ¼ , ak аппроксимирующей зависимости (12) находятся, исходя из следующего условия(сумма квадратов невязок между экспериментальными и





Параметры a1, a2 ¼, ak аппроксимирующей зависимости (12) находятся, исходя из следующего условия (сумма квадратов невязок между экспериментальными и расчетными данными на всем интервале аппроксимации должна быть минимальна, рис. 29):

, (21)

где yiэ – экспериментальные данные;

– расчетные данные;

i – порядковый номер точки;

m – число экспериментальных точек.

 
 

Рис. 29. Метод наименьших квадратов

(ye – экспериментальные данные, ymnk – расчетные данные)

Поскольку критерий R(a1, а2, ¼, ak) является функцией неизвестных параметров, его использование позволяет получить из условия (21) систему уравнений, в которой число неизвестных равно числу уравнений.

Условием существования экстремума (в нашем случае минимума) функции нескольких переменных является равенство нулю частных производных по каждой из переменных. Поэтому для приведения системы (21) к виду, удобному для решения, необходимо найти частные производные функции R по каждой из переменных a1, а2, ¼, ak:

. (22)

Коэффициенты зависимости (12) получают в результате решения системы уравнений (22).

Для примера выберем ту же зависимость (13)

.

Необходимо найти неизвестные параметры a0, a1, a2. Для этого запишем условие (21):

и вычислим частные производные:

,

преобразуем:

. (22)

Решение полученной системы уравнений (22) относительно неизвестных параметров a0, a1, a2 позволяет найти параметры аппроксимирующей зависимости.

Рассмотрим применение метода наименьших квадратов для нахождения параметров зависимости (15)

.

Как и в предыдущем методе, приведем зависимость (15) к линейному виду относительно неизвестных коэффициентов:

.

Тогда вместо зависимости (21)

в качестве условия поиска коэффициентов используем

или

(23)

Вычислим частные производные

преобразуем:

(24)

Решим систему (24) относительно А0 a1, a2 и рассчитаем коэффициент а0:

.







Дата добавления: 2014-11-12; просмотров: 659. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия