Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Этапы решения нелинейного уравнения





Уравнением называется равенство с переменной, которое в общем виде записывается в виде:

. (59)

Значение переменной х=х*, обращающее уравнение в тождество f(x*)=0 называется корнем уравнения.

Решить уравнение означает найти все его корни. Уравнение, вид которого не позволяет получить формулу для расчета точного значения корня, решается приближенно, например, x= cos (x) (получить систематическое решение невозможно).

Задача приближенного решения уравнения (59) заключается в исследовании функции

с целью поиска такой точки х* на оси, в которой значение функции обращается в нуль, т. е. y*=f(x*)= 0.

Численные методы решения складываются из двух этапов.

1. Отделение корней, т. е. нахождение такого интервала [ a, b ], в котором существует единственный корень. Таких интервалов может быть найдено столько, сколько существует действительных корней у решаемого уравнения.

Существует несколько методов отделения корней: аналитический, графический, графоаналитический. Чаще всего на практике пользуются комбинацией графического и аналитического методов.

Для уравнения f(x) приблизительно строится график. Отделяют интервал [a, b] предположительно содержащий корень, а затем функция в этом интервале исследуется на выполнение трех условий:

- функция в интервале [ a, b ] должна быть непрерывна;

- монотонна на [a, b], т. е. первая производная не меняет свой знак на этом интервале;

- на конце интервала функция f(x) меняет знак.

Если эти условия выполняются, то интервал [a, b] содержит действительный корень, и причем единственный.

Например, требуется отделить корень уравнения

. (60)

Для этого удобно построить графики функций f(x)= sin ( 2 x) и f(x)= ln (x) (рис. 50, а), а затем на оси OX отметить отрезки, локализующие абсциссы точек пересечения рассматриваемых кривых. Из графиков следует, что уравнение имеет корень, принадлежащий отрезку [1; 1, 5]. В другом варианте – построить график функции f(x)= sin ( 2 x)- ln (x). Пересечение графика с осью ОХ – определяет местонахождение корня (рис. 50, б).

а) б)

Рис. 50. Графический способ отделения корней сложной функции

2. Уточнение корня, т. е. нахождение его значения внутри интервала [ a, b ] с заданной степенью точности.

Задача уточнения корня формулируется следующим образом: пусть на интервале [ а, b ] имеется действительный корень и причем единственный. Необходимо найти этот корень с заданной степенью точности e.

Существует большое разнообразие вычислительных методов, реализующих поставленную задачу, однако последовательность основных этапов решения задачи одинакова для всех методов и может быть представлена в виде блок-схемы (рис. 51).

 

 
 

Рис. 51. Этапы отделения корней

Все существующие вычислительные методы уточнения корней нелинейного уравнения условно делятся на 3 группы:

- методы деления отрезка;

- методы, основанные на информации о значении первой производной;

- методы, использующие рекуррентные выражения.

В данной лабораторной работе рассматриваются методы, относящиеся к разным группам.







Дата добавления: 2014-11-12; просмотров: 1586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия