Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОСНОВНЫЕ ПОНЯТИЯ.





Дифференциальное уравнение (ДУ) – уравнение, связывающее независимую переменную х, функцию у = у(х) и ее производные и дифференциалы.

F(x,y,y’,y’’…) = 0

ДУ содержи только производные и дифференциалы, а функцию у и переменную х – не обязательно.

Если ДУ имеет одну независимую переменную, то оно обыкновенное ДУ

Если ДУ имеет больше двух независимых переменных, то это ДУ частных производных

Порядок ДУ – наивысший порядок производных, входящих в него.

Общее решение – такая дифференцируемая функция у = у(х, С), которая при подстановке в уравнение обращает его в тождество.

y'=y, y = cex

Иногда Ф(х,у,С)=0, которое не разрешается относительно У. Тогда это общий интеграл, а не решение.

Решение у=у(х, СО) получается из общего решения при определенном значении С – частное решение.

Задача Коши – нахождение частного решения ДУ вида у = у(х,Со), удовлетворяющего начальным условиям у(хо) = уо.

Интегральная кривая – график у = у(х) решения дифференциального уравнения, т.е график функции, удовлетворяющей этому уравнению.

 

 

17. Дифференциальные уравнения 1-го порядка с разделяющимися переменными.

Дифференциальным уравнением первого порядка называется соотношение, связывающее независимую переменную, функцию и ее первую производную. Общий вид: F(x, y, y`) = 0

Уравнение разрешимое относительно y`, называется дифференциальным уравнением первого порядка, разрешенное относительно производной. y` = f(x, y).

Дифференциальное уравнение первого порядка с разделяющимися переменными.

Диф. уравн. 1-го порядка - уравнением с разделяющимися переменными, если оно пожжет быть представлено в виде , где

Для решения дифференциального уравнения искомую функцию y представим в виде произведения двух множителей y = uv, где u – некоторое ненулевое решение соответствующего однородного уравнения. u` + p(x) = 0, а v-новая неизвестная функция. Так как y` = vu` + uv`, то подставляя … получим v[u`+p(x)u] + uv` = q(x) →uv`=q(x)

 

 

18. Однородные функции и однородное дифференциальное уравнение 1-го порядка.

Опр. Многочлен P(x,y) = ∑aijxiyj называется однородным степени n, если все его члены имеют один и тот же порядок n, т.е. для каждого члена имеем I + j = n

Если аргументы x,y однородного многочлена степени n заменить на пропорциональные величины λx и λy, то в результате этот многочлен увеличится на n-степень коэффициента пропорциональности λ.

Опр. Функция P(x,y) называется однородной степени n относительно своих аргументов х и у, если для любого числа λ (кроме 0) имеет место: Р(λх, λу) = λ”P(x,y)

Р. Однородным дифф. уравнением называется уравнение вида М(х,у)dx + N(x,y)dy = 0, где M(x,y) и N(x,у) – однородные функции одной и той же степени.

Опр. Дифф. уравнение, которое можно преобразовать к виду y’ = ϕ() называется однородным.

С помощью подстановки u = или u=yx, где u(x) – новая неизвестная функция, данное уравнение приводится к уравнению с разделяющимися переменными.

Действительно, y = ux, тогда y’ = u’x ≠ ux’

Подставим в y’ = ϕ(), получим: u’x + ux’ = ϕu, u’x + u = ϕ(x), и таким образом получим уравнение с разд.переменными относительно u:

= ; = + C

Или: = ln |x| + C = ln |x| + ln |C| = ln |xC|

После этого осуществляется подстановка u = и в результате получаем общее решение однородного дифф.уравнения.

 







Дата добавления: 2015-12-04; просмотров: 215. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия