Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Предел и непрерывность функции нескольких переменных.





 

Номер вопроса Ответ Номер вопроса Ответ
  A   B
  A   C
  A   A
  A   A
  A   D
  A   B
  C   A
  D   C
  D   C
  A   A
  B   C
  A   D
  A   C
  A   B
  A   D
  A   C
  C   A
  A   C
  A   A
  A   D
  D   C
  A   D
  A   D
  A   A
  A   A

 

Определение функции нескольких переменных. Основные понятия.

Если каждой паре независимых друг от друга чисел (х,у) из некоторого множества по какому-либо правилу ставится в соответствие одно значение переменной z, то она называется функцией двух переменных. z=f(x,y,)

Область определения функции z - совокупность пар (х,у), при которых функция z существует.

Множество значений (область значений) функции – все значения, которые принимает функция в ее области определения.

График функции двух переменных - множество точек P, координаты которых удовлетворяют уравнению z=f(x,y)

Окрестность точки M0 (х0;y0) радиуса r – совокупность всех точек (x,y), которые удовлетворяют условию < r

 

Область определения и область значений функции нескольких переменных. График функции нескольких переменных. (см1)

Предел и непрерывность функции нескольких переменных.

Число А называется пределом функции f(x,y) при стремлении точки М(х,у) к точке М00о), если для любого числа Е>0 найдётся такое число r>0, что для любой точки М(х,у), для которых верно условие ММ0<r также верно условие

Записывают:

Пусть точка М000) принадлежит области определения функции f(x,y). Тогда функция z=f(x,y) называется непрерывной в точке М000), если , причём точка М(х,у) стремится к точке М000) произвольным образом.

Если в какой-либо точке условие не выполняется, то эта точка разрыва функции f(x,y). Это может быть в случаях:

1) Функция z=f(x,y) не определена в точке М00о)

2) Не существует предел в точке М00о),

3) Этот предел существует, но не равно f(х0о)

 







Дата добавления: 2015-12-04; просмотров: 230. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия