Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точечные и интервальные статистические оценки и их свойства.





Точечные оценки-оценки, выраженные одним числом.

Пусть изучается дискретная генеральная совокупность относительно количественного признака х:

1. Генеральной средней называют среднее арифметическое значение признака генеральной совокупности. Если значения различны, то

=M(х)

Если значения имеют соответственно частоты , причем , то

=M(х)

Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.

 

Выборочным средним называют среднее арифметическое значение признака выборочной совокупности.

Если все значения признака выборки объема n различны, то:

 

.

 

Если значения признака имеют частоты соответственно, причем , то:

 

.

Выборочная средняя применяется для оценки неизвестного математического ожидания случайной величины.

Она является несмещённой и состоятельной оценки математического ожидания.

Генеральной дисперсией Dr называется среднее арифметическое квадратов отклонения значений признака х генеральной совокупности от генеральной средней.

 

Выборочной дисперсией Dв называется среднее арифметическое квадратов отклонения наблюдаемых значений признака Х от выборочной средней

Выборочная дисперсия является состоятельной, но смещенной оценкой дисперсии.

Несмещенной и состоятельной оценкой дисперсии является исправленная выборочная дисперсия

При малом объеме выборки (n<=30) пользуются исправленной выборочной дисперсией, при больших n безразлично какой пользоваться.

Для практических расчетов выборочной дисперсии используют формулу:

Среднее квадратичное отклонение равно корню из выборочной дисперсии

 

Интервальные оценки параметров распределения определяется двумя числами – концами интервала.

Интервал (Õ1; Õ2) называется доверительным для параметра О с доверительной вероятностью (надёжностью) y (0<y<1), если неравенство Õ1<O< Õ2 выполняется с вероятностью не меньше у, те

P(Õ1<O< Õ2)≥y (в символе Õ еще посередине О внутри черточка, просто не нашла такой значок)

Доверительный интервал для оценки неизвестного математического ожидания нормального распределения генеральной совокупности при известном среднем квадратическом отклонении вычисляется по формуле


где - точность оценки, - объем выборки, - выборочное среднее, - аргумент функции Лапласа, при котором где α-надежность.







Дата добавления: 2015-12-04; просмотров: 148. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия