Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точечные и интервальные статистические оценки и их свойства.





Точечные оценки-оценки, выраженные одним числом.

Пусть изучается дискретная генеральная совокупность относительно количественного признака х:

1. Генеральной средней называют среднее арифметическое значение признака генеральной совокупности. Если значения различны, то

=M(х)

Если значения имеют соответственно частоты , причем , то

=M(х)

Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.

 

Выборочным средним называют среднее арифметическое значение признака выборочной совокупности.

Если все значения признака выборки объема n различны, то:

 

.

 

Если значения признака имеют частоты соответственно, причем , то:

 

.

Выборочная средняя применяется для оценки неизвестного математического ожидания случайной величины.

Она является несмещённой и состоятельной оценки математического ожидания.

Генеральной дисперсией Dr называется среднее арифметическое квадратов отклонения значений признака х генеральной совокупности от генеральной средней.

 

Выборочной дисперсией Dв называется среднее арифметическое квадратов отклонения наблюдаемых значений признака Х от выборочной средней

Выборочная дисперсия является состоятельной, но смещенной оценкой дисперсии.

Несмещенной и состоятельной оценкой дисперсии является исправленная выборочная дисперсия

При малом объеме выборки (n<=30) пользуются исправленной выборочной дисперсией, при больших n безразлично какой пользоваться.

Для практических расчетов выборочной дисперсии используют формулу:

Среднее квадратичное отклонение равно корню из выборочной дисперсии

 

Интервальные оценки параметров распределения определяется двумя числами – концами интервала.

Интервал (Õ1; Õ2) называется доверительным для параметра О с доверительной вероятностью (надёжностью) y (0<y<1), если неравенство Õ1<O< Õ2 выполняется с вероятностью не меньше у, те

P(Õ1<O< Õ2)≥y (в символе Õ еще посередине О внутри черточка, просто не нашла такой значок)

Доверительный интервал для оценки неизвестного математического ожидания нормального распределения генеральной совокупности при известном среднем квадратическом отклонении вычисляется по формуле


где - точность оценки, - объем выборки, - выборочное среднее, - аргумент функции Лапласа, при котором где α-надежность.







Дата добавления: 2015-12-04; просмотров: 148. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия