Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стандарт напряжения.





Одно из наиболее важных, наряду со сквидами, приложений сверхпроводников в аналоговой электронике представляют собой стандарты напряжения. Из выражения для тока в нестационарном эффекте Джозефсона при постоянном напряжении на переходе следует, что среднее значение тока по времени равно нулю. Рассмотрим ситуацию, когда на джозфсоновском переходе присутствует как постоянное напряжение V0, так и переменное напряжение V1(t)=-V1cos(ωt). Решив уравнение для фазы , получим выражение для джозефсоновского тока:

Можно показать, что среднее значение этого тока по времени уже не равно нулю. Выполним разложение функции «синус от синуса» в ряд по функциям Бесселя целого порядка Jn:

.

Как нетрудно видеть при

среднее значение тока отлично от нуля и равно

.

В эксперименте измеряется именно среднее значение тока. Поэтому при наличии на джозефсоновском переходе одновременно постоянного V0 и переменного смещения V1(t) данный эффект будет проявлять себя в возникновении на вольт-амперной характеристике перехода ступенек тока на фоне зависимости :

Такие ступеньки называют ступеньками Шапиро. Величина скачка тока зависит от амплитуды переменного напряжения и других параметров, но само положение скачка на оси V0 определяется только частотой и мировыми постоянными. Поскольку для определения частоты имеются высокоточные стандарты, данный эффект можно использовать для определения напряжения с высокой точностью и создания стандарта напряжения.







Дата добавления: 2015-12-04; просмотров: 239. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия