Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача Купера. Куперовские пары.





Покажем, что парное взаимодействие электронов, которое имеет характер притяжения, приводит к образованию их связанного состояния. Это не так очевидно, поскольку речь идет о трехмерной системе. Как известно из квантовой механики, связанное состояние частицы на притягивательном потенциале имеет место при любом, даже сколь угодно слабом потенциале, только в одномерных и двумерных системах. В трехмерной ситуации связанное состояние образуется только в случае достаточно сильного потенциала.

Рассмотрим уравнение Шредингера для двух взаимодействующих электронов, находящихся над поверхностью Ферми:

здесь в операторе εF кинетической энергии мы отсчитываем энергию от уровня Ферми:

,

,

Волновая функция пары невзаимодействующих электронов с противоположными импульсами имеет вид произведения двух плоских волн:

где

Электронам, находящимся в возбужденном состоянии над поверхностью Ферми, соответствует условие . Ищем решение для волновой функции взаимодействующих электронов в виде произвольной суперпозиции таких состояний:

Перегруппируем члены в уравнении Шредингера

Найдем среднее значение энергии:

.

Подставив в это соотношение выражение для волновой функции в виде суперпозиции по состояниям плоских волн, получим:

,

где матричный элемент энергии взаимодействия описывает рассеяние из состояния в состояние :

Полученное интегральное уравнение в общем случае требует численного решения. Однако, если сделать некоторые допущения о виде ядра (матричного элемента взаимодействия), то можно получить аналитическое решение. Рассмотрим сепарабельное взаимодействие (допускающее разделение на множители) вида

,

.

Умножим обе части на и просуммируем по k. Сокращая обе части на (при условии ), получим следующее уравнение для определения разрешенных значений энергии:

.

Здесь дискретная сумма k по выполняется по дискретным значениям квазиимпульса, определяемым граничными условиями Борна-Кармана (m1,2,3 –целые):

.

Соответственно, εk также принимает дискретный ряд значений. Решение этого уравнения удобно проанализировать графически. График правой части имеет вид, представленный на рисунке. Особенности графика соответствуют нулям знаменателя. Как следует из графика при λ>0 все решения расположены в области E>0 и описывают незначительный сдвиг уровней энергии из-за рассеяния. Вместе с тем при λ<0, т.е. при наличии межэлектронного притяжения, появляется дополнительное решение при E<0,

отвечающее связанному состоянию двух электронов. Это решение существует при любом сколь угодно слабом межэлектронном притяжении. Два электрона в связанном состоянии образуют куперовскую пару.

Более точно определить энергию связанного состояния можно, решив уравнение на собственные значения. Выше мы установили, что межэлектронное притяжение действует в узком энергетическом слое вблизи поверхности Ферми. Пренебрегая угловой зависимостью матричного элемента взаимодействия, выберем определяющие его сомножители в следующем виде:

Перейдем в уравнении на собственные значения стандартным образом от суммирования к интегрированию в пределе бесконечного объема системы

где мы учли, что вблизи поверхности Ферми

и . Пусть межэлектронное взаимодействие отвечает притяжению:

.

Введем эффективную константу взаимодействия

где - эффективная плотность состояний на поверхности Ферми. Выполнив интегрирование, получим:

,

В результате находим для энергии связанного состояния

При стремлении эффективной константы взаимодействия к нулю энергия связанного состоянии экспоненциально по обратному параметру взаимодействия стремится к нулю. Именно таким поведением характеризуется энергия связанного состояния от глубины потенциальной ямы в двумерной системе. Данная аналогия имеет глубокий физический смысл и объясняет природу связанного состояния электронов. Электроны, движущиеся в узком слое вблизи поверхности Ферми можно считать эффективно двумерными. Поэтому в соответствии с общим результатом квантовой механики пара таких электронов образует связанное состояние при сколь угодно слабом взаимодействии.







Дата добавления: 2015-12-04; просмотров: 519. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия