Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСПРЕДЕЛЁННЫЕ СИСТЕМЫ





 

Точечные модели – это модели, в которых искомые величины зависят только от времени (это все модели, рассмотренные ранее).

 

Распределённые модели – это модели, в которых величины меняются не только во времени, но и в пространстве.

 

В дальнейшем будут рассмотрены системы, в которых могут возникать устойчивые пространственные неоднородные связи, возникающие в результате развития неустойчивостей в однородной диссипативной среде (в среде, которая не получает энергии из вне). Такие структуры принято называть диссипативными. В 1952-ом году Алан Тьюринг основал теорию диссипативных сред.

 

Базовая модель теории распределённых или диссипативных систем описывается следующей системой уравнений:

 

 

и – это, кроме всего прочего, ещё и функции, описывающие процессы в распределённых системах

и – это функции среды

и – скорости распределения возмущений по осям и соответственно

– величина, равная радиальной координате, .

 

Иногда данные уравнения называют распределёнными или диффузионными.

 

Эта модель описывает процессы самопроизвольного возникновения и распространения волн в распределённых системах, которые также называются процессами самоорганизации.

 

Автоволны – это периодические самоподдерживающиеся волны или активности. В зависимости от видов функций , , в системе могут возникать следующие типа поведения и самоорганизации.

 

<вставить рисунки сюда>

 

5 – Стационарное неоднородное распределение переменных в пространстве диссипативной структуры.

 

6 – Генерация волн автономным источником импульсной активности. В качестве такого источника могут быть локальные возмущения переменных.

 

Общим условием развития процессов самоорганизации является появление неустойчивости в исходной распределённой системе. Такие неустойчивости могут возникнуть, если отклонение от состояния равновесия превышает критическое. В частности, такие неустойчивости могут возникнуть в системах с особой точкой типа “седло”, а “неустойчивый узел” может вызвать даже возникновение бегущих волн конечной амплитуды или стоячих волн.

 

Диссипативная структура, возникающая в результате неустойчивости, в реальном мире может поддерживаться за счёт постоянного притока энергии и вещества. Например, стоячие волны.

 

Для возникновения диссипативных структур нужно, чтобы уравнение, описывающее процессы в системе, были нелинейными. Кроме того, процессы в системе должны протекать согласовано. Изучением таких систем занимается синергетикой – междисциплинарная область или наука.

 

 

ТРИМОЛЕКУЛЯРНАЯ МОДЕЛЬ (БРЮССЕЛЛЯТОР)

 

Тримолекулярная модель описывает и позволяет исследовать структуру, которая при разных значениях параметров может обладать различным поведением во времени и пространстве. Система, описывающая такую модель, выглядит так:

 

 

Вещества и распределены равномерно, вещества и выпадают в осадок, вещества и участвуют в химических процессах, и всё это описывается диффузионным уравнением:

 

 

, – это функции, – радиальная координата. Радиальная координата обеспечивает зависимость системы от пространства. Это делает систему распределённой. Чтобы сделать её точечной, следует абстрагироваться от пространства. Тогда .

 

Решим систему. Т. е. выделим и исследуем её особые точки.

Для этого правые части уравнений приравняем к нулю.

 

 

Получили:

 

1) не существует

 

2) y=bxy=ba

 

a+bx-b+1x=0

 

x=0

 

<вставить рисунки сюда>

 

В распределённых системах возможно появление неустойчивости седлового типа, которое приводит к возмущению в пространстве однородной системы и развитию в ней пространственно-неоднородных стационарных режимов.

 

Например, Dl,d – это область протекания реакции, причём l – длина области, d – диаметр области (продолговатый цилиндрический сосуд). При определении размерности области и длин волн λ возможно определить характер неоднородности и характер пространства в системе. В такой системе возможно возникновении периодических структур, независящих от времени. Для их появления необходимо, чтобы величины Dx и Dy не были равны. Коэффициенты a* и b* должны удовлетворять условию b=1+a2 .

 

В тримолекулярные модели также возможны режимы в виде устойчивых и бегущих волн. Непрерывное изменение параметров задачи... <продолжаем на след. лекции>.







Дата добавления: 2015-06-15; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия