Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устойчивость разностной схемы





Разностная схема называется устойчивой, если разностная задача имеет единственное решение такое, что .

Другими словами, при малых возмущениях мало возмущается .

 

Теорема. Пусть разностная схема аппроксимирует дифференциальную задачу на решении с порядком и устойчива. Тогда решение разностной задачи сходится к с порядком , причем . Здесь - константа аппроксимации, С – константа устойчивости.

Доказательство. Пусть , тогда по единственности решения (определение устойчивости) и определению аппроксимации . Тогда

(при имеем ).

 

 

Содержание.

Лекция 1 Неопределенный интеграл, таблица интегралов. 2

 

Лекция 2. Методы интегрирования и таблица интегралов. 4

 

Лекция 3. Интегрирование рациональных функций. 8

 

Лекция 4. Интегрирование иррациональных и 14

тригонометрических функций.

 

Лекция 5. Определенный интеграл. 18

 

Лекция 6. Формула Ньютона – Лейбница. 22

 

Лекции 7, 8 Несобственные интегралы. 25

 

Лекции 9-10. Приложения определенного интеграла. 32

 

Лекция 11. Дифференциальные уравнения. 37

 

Лекция 12. Основные типы дифференциальных уравнений 39

первого порядка.

 

Лекция 13. Геометрическая интерпретация дифференциальных 47

уравнений 1 порядка, изоклины. Особые точки и особые

решения.

 

Лекция 14. Дифференциальные уравнения высших порядков. 50

 

Лекции 15–16. Линейные дифференциальные уравнения 53

n –ого порядка с переменными коэффициентами.

 

Лекции 17-18. Линейные дифференциальные уравнения с 61

постоянными коэффициентами.

 

Лекции 19-20. Нормальные системы дифференциальных уравнений. 68

 

Лекция 21. Системы линейных дифференциальных уравнений. 76

 

Лекция 22. Однородные системы линейных дифференциальных 82 уравнений с постоянными коэффициентами.

Лекции 23-24. Устойчивость движения, классификация точек покоя, 87

теоремы Ляпунова.

 

Лекция 25. Приближенное вычисление интеграла. 95

 

Лекция 26. Обзор численных методов решения задачи Коши 98







Дата добавления: 2015-04-16; просмотров: 393. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия