Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложение взаимно перпендикулярных колебаний





 

Сначала рассмотрим случай, когда частоты складываемых колебаний одинаковы. Пусть координаты х и у частицы изменяются по закону

(23)

Можно показать, что траекторией частицы при этом является эллипс (рис.10), вид которого определяется отношением амплитуд a и b и разностью фаз d.

 

Рис.10

 

Некоторые частные случаи:

а) d = 0, тогда y = (b / a) x, т.е. частица движется по прямой в первом и третьем квадрантах (рис.11, а);

б) d = p, тогда y = — (b / a) x и частица движется тоже по прямой, но во втором и четвертом квадрантах (рис.11, б);

в) d = p/2. В этом случае x 2/ a 2 + y 2/ b 2 = 1, т.е. частица движется по эллипсу, полуоси которого а и b совпадают с осями координат. При а = b эллипс превращается в окружность. Так как колебания вдоль оси У происходят с опережением по фазе на p/2 относительно колебаний по оси Х, то сначала у и лишь затем х достигают максимальных значений. Это значит, что движение частицы будет происходить по часовой стрелке (рис.11, в);

г) d = 3p/2. Это то же, что и d = —p/2, поскольку изменение фазы на 2p несущественно (рис.11, г).

 

Рис.11

 

 

Если частоты взаимно перпендикулярных колебаний не одинаковы и относятся как целые числа, то траектории результирующего движения имеют более сложные формы. Их называют фигурами Лиссажу. Одна из этих фигур показана на рис.12, она соответствует отношению частот

 

Рис.12

 

И последнее: при сложении взаимно перпендикулярных колебаний полная энергия

, (24)

т.е. складывается изэнергий каждого колебания (в отличие от сложения колебаний одного направления(. Согласно (13), эта энергия

. (25)

 







Дата добавления: 2015-04-16; просмотров: 364. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия