Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Возможные случаи решения линейных уравнений с параметрами





 

1. Если тогда уравнение примет вид которое имеет бесконечное множество решений, x - любое действительное число.

2. Если тогда уравнение примет вид , которое не имеет решений.

3. Если тогда уравнение имеет единственное решение

 

Пример 1. Решить уравнение на множестве действительных чисел

 

Решение

 

Преобразуем уравнение:

В данном случае f(a) = a - 3, g(a) = 3a.

1. Если f(a) = 0, a - 3 = 0, тогда уравнение примет вид: Оно не имеет решений.

2. Если тогда уравнение имеет единственное решение

 

Ответ:

1. Если тогда уравнение не имеет решений.

2. Если тогда уравнение имеет ед. решение

 

Пример 2. Решить уравнение

 

Решение

 

Преобразуем уравнение:

Здесь f(m) = m(m - 3) и g(m) = m - 3.

 

1. Если f(m) = 0, m(m - 3) = 0, m = 0, m = 3:

а) при m = 3, уравнение примет вид: которое имеет бесконечное множество решений, x - любое действительное число;

б) при m = 0, уравнение примет вид: которое не имеет решений.

2. Если тогда уравнение имеет единственное решение

 

Ответ:

1. Если m = 3, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если m = 0, тогда уравнение не имеет решений.

3. Если то уравнение имеет единственное решение

 

Пример 3. Решите уравнение

 

Решение

 

В этом уравнении функция f(a) имеет вид . Разложим на множители двучлен , получим

Функция g(a) является квадратным трехчленом . Разложим его на множители.

Трехчлен имеет корни , тогда

1. Если , т. е. , , тогда уравнение примет вид:

1) При , получаем , значит уравнение не имеет корней.

2) При , получаем , значит уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если и , тогда уравнение имеет единственное решение:

 

Ответ:

 

1. Если , то уравнение не имеет корней.

2. Если , то уравнение имеет бесконечное множество решений.

3. Если и , то уравнение имеет единственное решение:

 


Пример 4.

 

Решение

 

Область допустимых значений параметра. При уравнение не определено.

Пусть

Преобразуем уравнение:

7(x - 1) - a(ax - 1) + 2(a + 2)(1 - x) = 0 или

(a - 1)(a + 3)x = 3(a - 1), f(a) = (a - 1)(a + 3), g(a) = 3(a - 1).

1. Если f(a) = 0, a = 1, a = -3.

а) При a = 1, уравнение примет вид уравнение имеет бесконечное множество решений, x - любое действительное число.

б) При a = -3, уравнение примет вид оно не имеет решений.

2. Если тогда уравнение имеет единственное решение

3. В области допустимых значений переменной установлено, что и При a = 0 и при a = -2 уравнение не имеет корней.

 

Ответ:

 

1. При a = 1, уравнение имеет бесконечное множество решений, x - любое действительное число.

2. При a = 0, a = -2, a = -3, уравнение не имеет решений.

3. Если тогда уравнение имеет единственное решение

 

Пример 5. Решите уравнение

 

Решение

 

Преобразуем уравнение:

1. Если тогда уравнение имеет единственное решение

2. Если a = 0, тогда уравнение примет вид:

1) если тогда уравнение не имеет решений;

2) если b = 0, тогда уравнение имеет бесконечное множество решений,

x - любое действительное число.

3. Если a = 2, тогда уравнение примет вид:

1) если тогда уравнение не имеет решений;

2) если тогда уравнение имеет бесконечное множество решений,

x - любое действительное число.

 

Ответ:

 

1. Если тогда уравнение имеет единственное решение

2. Если a = 0, но и если a = 0, но тогда уравнение не имеет корней.

3. Если a = 0, b = 0 и если a = 2, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

 

 

Пример 6.

 

Решение

 

Преобразуем уравнение

 

1. Если a = 1, тогда уравнение примет вид:

если то уравнение имеет бесконечное множество решений;

если то уравнение не имеет решений.

2. Если b = 2, тогда уравнение примет вид:

если a = 4, то уравнение имеет бесконечное множество решений;

если то уравнение не имеет корней.

3. Если и , тогда уравнение имеет единственное решение

 

Ответ:

 

1. Если и , тогда уравнение имеет единственное решение

2. Если и или и , тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

3. Если и или и , тогда уравнение не имеет корней.

 








Дата добавления: 2015-04-16; просмотров: 492. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия