Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Возможные случаи решения линейных уравнений с параметрами





 

1. Если тогда уравнение примет вид которое имеет бесконечное множество решений, x - любое действительное число.

2. Если тогда уравнение примет вид , которое не имеет решений.

3. Если тогда уравнение имеет единственное решение

 

Пример 1. Решить уравнение на множестве действительных чисел

 

Решение

 

Преобразуем уравнение:

В данном случае f(a) = a - 3, g(a) = 3a.

1. Если f(a) = 0, a - 3 = 0, тогда уравнение примет вид: Оно не имеет решений.

2. Если тогда уравнение имеет единственное решение

 

Ответ:

1. Если тогда уравнение не имеет решений.

2. Если тогда уравнение имеет ед. решение

 

Пример 2. Решить уравнение

 

Решение

 

Преобразуем уравнение:

Здесь f(m) = m(m - 3) и g(m) = m - 3.

 

1. Если f(m) = 0, m(m - 3) = 0, m = 0, m = 3:

а) при m = 3, уравнение примет вид: которое имеет бесконечное множество решений, x - любое действительное число;

б) при m = 0, уравнение примет вид: которое не имеет решений.

2. Если тогда уравнение имеет единственное решение

 

Ответ:

1. Если m = 3, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если m = 0, тогда уравнение не имеет решений.

3. Если то уравнение имеет единственное решение

 

Пример 3. Решите уравнение

 

Решение

 

В этом уравнении функция f(a) имеет вид . Разложим на множители двучлен , получим

Функция g(a) является квадратным трехчленом . Разложим его на множители.

Трехчлен имеет корни , тогда

1. Если , т. е. , , тогда уравнение примет вид:

1) При , получаем , значит уравнение не имеет корней.

2) При , получаем , значит уравнение имеет бесконечное множество решений, x - любое действительное число.

2. Если и , тогда уравнение имеет единственное решение:

 

Ответ:

 

1. Если , то уравнение не имеет корней.

2. Если , то уравнение имеет бесконечное множество решений.

3. Если и , то уравнение имеет единственное решение:

 


Пример 4.

 

Решение

 

Область допустимых значений параметра. При уравнение не определено.

Пусть

Преобразуем уравнение:

7(x - 1) - a(ax - 1) + 2(a + 2)(1 - x) = 0 или

(a - 1)(a + 3)x = 3(a - 1), f(a) = (a - 1)(a + 3), g(a) = 3(a - 1).

1. Если f(a) = 0, a = 1, a = -3.

а) При a = 1, уравнение примет вид уравнение имеет бесконечное множество решений, x - любое действительное число.

б) При a = -3, уравнение примет вид оно не имеет решений.

2. Если тогда уравнение имеет единственное решение

3. В области допустимых значений переменной установлено, что и При a = 0 и при a = -2 уравнение не имеет корней.

 

Ответ:

 

1. При a = 1, уравнение имеет бесконечное множество решений, x - любое действительное число.

2. При a = 0, a = -2, a = -3, уравнение не имеет решений.

3. Если тогда уравнение имеет единственное решение

 

Пример 5. Решите уравнение

 

Решение

 

Преобразуем уравнение:

1. Если тогда уравнение имеет единственное решение

2. Если a = 0, тогда уравнение примет вид:

1) если тогда уравнение не имеет решений;

2) если b = 0, тогда уравнение имеет бесконечное множество решений,

x - любое действительное число.

3. Если a = 2, тогда уравнение примет вид:

1) если тогда уравнение не имеет решений;

2) если тогда уравнение имеет бесконечное множество решений,

x - любое действительное число.

 

Ответ:

 

1. Если тогда уравнение имеет единственное решение

2. Если a = 0, но и если a = 0, но тогда уравнение не имеет корней.

3. Если a = 0, b = 0 и если a = 2, тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

 

 

Пример 6.

 

Решение

 

Преобразуем уравнение

 

1. Если a = 1, тогда уравнение примет вид:

если то уравнение имеет бесконечное множество решений;

если то уравнение не имеет решений.

2. Если b = 2, тогда уравнение примет вид:

если a = 4, то уравнение имеет бесконечное множество решений;

если то уравнение не имеет корней.

3. Если и , тогда уравнение имеет единственное решение

 

Ответ:

 

1. Если и , тогда уравнение имеет единственное решение

2. Если и или и , тогда уравнение имеет бесконечное множество решений, x - любое действительное число.

3. Если и или и , тогда уравнение не имеет корней.

 








Дата добавления: 2015-04-16; просмотров: 492. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия