Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Симметрия и химическая связь





Заключительная часть этого пособия связана с использованием симметрии в описании и изображении (описании) химического связывания и электронных энергетических уровней внутри молекулы. В описании химического связывания методом молекулярных орбиталей, молекулярная волновая функция, которая в конечном счёте устанавливает (от которой в итоге зависят) эти энергетические уровни, имеет свойства симметрии, которые связаны с точечной группой молекулы таким образом, в общих чертах, что каждая волновая функция должна иметь симметрию соответствующую (относящуюся) к одному из неприводимых представлений.

Эти волновые функции «конструируются» из линейной комбинации составляющих атомных орбиталей (модель ЛКАО) и в процессе её получения полезно вводить аргументы, связанные с симметрией (аргументы симметрии) на ранних стадиях. В то же время, полезно сохранить идеи о локализованном связывании, которые свойственны терминам «σ-связь» и «π-связь».

Всесторонне описание химического связывания на основе представлении модели ЛКАО можно найти в некоторых из учебников, перечисленных в Приложении III.В этой части мы главным образом сосредоточим внимание на выведении симметрии комбинаций орбиталей, которые формируют «строительные блоки» для этой модели.

 

7.1 Наборы атомов-описание комбинаций орбиталей с тчоки зрения симметрии.

 

В Части 5 мы видели, как молекулярные колебания возникают как следствие

Рис. 7.1

взаимосвязанного (согласованного) движения группы атомов. Вначале, когда атомы вполне разделены и не взаимодействуют, как в идеальном моноатомном газе, все 3n степеней свободы системы из n-атомов соответствуют трансляциям и движение атомов не согласовано. Когда атомы собраны вместе и формируют чётко очерченную (легко отличимую) группу, остаются только три трансляционных (поступательных) степени свободы –для образовавшейся молекулы в целом, а остальные проявляются как молекулярные вращения и колебания. Колебательная симметрия тогда является результатом волновых функций и нуждается в описании колебательных энергетических уровней в молекуле.

Аналогичная ситуцация возникает при рассмотрении энергий ансамблей атомов. На рис 7.1 показан случайный набор атомов, и, для простоты, мы можем принять что это атомы водорода, у каждого их которых 1 s орбиталь. Система как целое - динамична, не имеет определённой равновесной структуры, и её энергия-это сумма энергий отдельных, не взаимодействующих атомов.

 

7.2 Атомные орбитали в тетраэдрическом (Td) окружении.

Теперь представим ситуацию, когда четыре таких атома взаимодействуют таким образом, что их позиции относительного равновесия остаются зафиксированными, (например, в тетраэдрическом расположении), в результате чего получается молекула Н4. Энергетические уровни теперь зависят, в частности, от взаимодействия между отдельными атомными орбиталями, и волновая функция, которая это описывает, основана на комбинации составляющих (молекулу) орбиталей. И изначальная цель этой главы состоит в том, чтобы установить описание таких комбинаций с помощью симметрии.

На рис 7.2 показаны четыре атома водорода в тетраэдрическом расположении, с

Рис. 7.2

индивидуальными атомными орбиталями f1, f2 , f3 , и f4 и они должны быть скомбинированы (объединены) таким образом, чтобы соответствовать неприводимым представлениям в Td, т.е. нам нужно Г f.

Это представление получается путём рассмотрения влияния операций точечной группы Td на четыре данных орбитали. Эта задача идентична приведенной в примере, обсуждавшемся ране в Главе 4, где мы вывели представление для 1 s орбиталей атомов Н в СН4:

Г f = A1 + T2

При обсуждении симметрии молекулярных колебаний, мы видели, что каждая колебательная мода (т.е. А1, В1 и т.д) имеет опознаваемую частоту, и аналогичная ситуация возникает и здесь.

Комбинация симметрий А1 + Т2, которая возникает здесь из четырёх составлющих

Рис. 7.3

атомных орбиталей в ансамбле «Н4» подобным образом даёт начало двум различным энергетическим уровням.

И, наконец, так как возможно наглядно представить относительные смещения атомов, связанные с колебаниями определённой симметрии, то возможно указать относительные знаки на составляющих атомных орбиталях, которые комбинируются, давая Г f.

На Рис. 7.3показана комбинация А1 1 s орбиталей в «Н4». Ясно, что «полностью

симметричное» выстроит (приведёт к, расставит) позитивные знаки.

Рис. 7.4

Из ранее обсуждавшегося, комбинация Т2 будет иметь три компоненты, что согласуется с его обозначением как «трижды вырожденного», и мы можем ожидать некоторой похожести в симметриях смещений координат x, y и z, поскольку эти функции также изменяются как Т2. Одна компоненте комбинации Т2 показана на Рис. 7.4. и, как ожидалось, порядок знаков «+» и «-» на орбиталях отражает «+» и «-» направления соответствующих Декартовых осей, в данном случае, z.

 

7.3 Другие порядки (расположения) s -орбиталей.

 

Представления А1 + Т2 также могут быть распознаны как симметрии валентных мод в Td молекуле, такой как СН4 (часть 6), и это соответствие между Г Г f для ансамбля из «n» 1 s орбиталей и валентными модами ГM-L в молекуле MLn могут быть с пользой для дела распространены на многие другие системы.

Так октаэдрический ансамбль из шести - s -орбиталей будет преобразовываться тем же самым образом, что и ГS-F в SF61g + Еg+ Т1u), и плоско-квадратном ансамбле s -орбиталей (D4h) будут иметь представление А1g + В1g + Еu по аналогии с ГXe-F в XeF4. Оба результата были получены ранее в Части 6.

 







Дата добавления: 2015-09-18; просмотров: 424. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия