Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция № 4. Метод Гаусса.





Решение систем линейных уравнений методом Гаусса.

Рассмотрим систему m- линейных уравнений c n -неизвестными

(1)

Теорема: Если какое-либо уравнение системы умножить на произвольное число и прибавить это произведение к другому уравнению системы, оставив при этом неизменными все остальные уравнения системы, включая то, которое умножалось на число, то получим систему, равносильную исходной.

Составим расширенную матрицу системы (1) .

Строки матрицы соответствуют уравнениям системы. Умножение уравнения на число и сложение этого произведения с другим, эквивалентно умножению строки матрицы на это число и почленному сложению произведения с другой строкой матрицы. Таким образом, работа с уравнениями заменяется работой со строками матрицы.

Этапы решения:

I Этап: прямой ход заключается в том, что система (1) приводится к ступенчатому виду: , (2)

в частности, к треугольному виду: . (3)

Следует запомнить.

Другими словами, если данная система уравнений (1) после выполнения ряда элементарных преобразований приводится к треугольному виду, то это означает, что система (1) является совместной и определенной.

Замечание.

Если в процессе приведения системы (1) к ступенчатому виду появляется уравнение вида , то система несовместна.

II этап: обратный ход заключается в решении ступенчатой (треугольной) системы.

Двигаясь снизу вверх по уравнениям системы (3) находим ; затем, подставляя значение в предыдущее уравнение, находим и т. д..

Если система (1) после элементарных преобразований приводится к ступенчатой системе (2), то, перенеся члены с неизвестными , в правую часть, получим систему вида (4).

. (4)

Придаем неизвестным , произвольные значения и получаем треугольную систему.

(5)

Если система (1) после элементарных преобразований приводится к ступенчатой системе (2), то, перенеся члены с неизвестными , в правую часть, получим систему вида (4).

Замечание.

- свободные неизвестные.

- базисные неизвестные.

Из системы (5), поднимаясь снизу вверх, найдем последовательно все остальные неизвестные .

Замечание.

Так как числа могут иметь различные значения, то исходная система (1) имеет бесчисленное множество решений.

Однородная система m линейных уравнений с n – неизвестными.

- однородная СЛАУ. (6)

Однородная система всегда совместна, т. к. , , …, образуют решение системы. Это решение называется нулевым.

Нулевое решение будет единственным решением системы (6). Либо помимо нулевого решения должно существовать бесчисленное множество ненулевых решений.

Задачи

Пример 1. Решить систему уравнений

Решение

Составляем расширенную матрицу системы и приводим ее к ступенчатому виду.

~ ~ ~

Система несовместна.

 

Пример 2. Решить систему уравнений

Решение

Составляем расширенную матрицу системы и приводим ее к ступенчатому виду.

~ ~ ~ ~

Система совместна и определена. Двигаясь снизу вверх по уравнениям системы , находим , ; , .

Таким образом, получаем единственное решение системы .

Пример 3. Решить систему уравнений .

Решение

Составляем расширенную матрицу системы и приводим ее к ступенчатому виду.

~ ~ ~

Так как после преобразований число уравнений меньше числа неизвестных, то система неопределена.

Для решения необходимо определить базисные и свободные неизвестные.

Таким образом, и - базисные неизвестные, а и - свободные неизвестные системы.

.

. Отсюда .

Общее решение системы . Положив, например, , , получаем одно из частных решений: , , , .

Придавая свободным неизвестным произвольные значения, найдем различные решения системы.


 







Дата добавления: 2015-08-12; просмотров: 1446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия