Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение алгебраической формы оптимального решения методом Ли-Юк-Вина





Идея решения этим методом базируется на том свойстве оригиналов и изображений по Лапласу, что если оригинал равен нулю на одной из полуосей времени, то изображение не содержит нулей и полюсов в соответствующей полуплоскости. Образуем из интегрального уравнения (14) функцию времени:

(29)

(29) выполняется при .

 

Тогда изображение этой функции q (t) не должно содержать нулей и полюсов в верхней полуплоскости.

 

Преобразуем правую часть (29) по Фурье:

(30)

Факторизуем спектральную плотность:

и поделим обе части (30) на :

 

Указание: разобьем 2-е слагаемое (31) на сумму 2-х слагаемых. Одно из них содержит нули и полюсы в верхней полуплоскости, другое – в нижней.

(32)

Это операция носит название сепарации. Очевидно, в (32) слагаемые 1-е и 2-е должны взаимно уничтожиться, чтобы не было нулей и полюсов в верхней полуплоскости.

(33)

Примечание: оптимальное решение (33) справедливо только для идеальных операторов в виде так называемого обобщенного оператора воспроизведения, представляющего собой степенной полином:

(34)

Только в этом случае возможно проведение сепарации.

 

Задача. Спроектировать оптимальный фильтр при следующих исходных данных:

Решаем по (38) без учета внутренней помехи . Это фильтр Винера-Колмогорова.

, (35)

где (36)

.

1) (метод неопределенных коэффициентов)

Факторизация:

.

 







Дата добавления: 2015-08-12; просмотров: 347. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия