Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порівняльна статика моделі Леонтьєва





 

Повернемось знову до звичайної моделі Леонтьєва

(1)

Координати вектора кінцевого попиту можна розглядати як параметри системи (1) і ставити математичну задачу про характер залежності розв’язку х від вектора с: х=х(с).

Матриця А вважається при цьому фіксованою. По суті, мова йде про реакцію системи з технологічною матрицею А на зміну зовнішніх або екзотичних параметрів - координат вектора попиту.

Теорема 1 (про додатність вектора валового випуску в нерозкладній продуктивній моделі Леонтьєва). Нехай в моделі (1) матриця А нерозкладна і продуктивна, вектор попиту с 0, c ≠ 0.

Тоді . Інакше, в нерозкладній продуктивній виробничій системі для задоволення ненульового кінцевого попиту необхідний валовий випуск кожного з товарів в додатній кількості.

▼; Доведення: Для можемо записати:

(2)

Виберемо номер . Тоді за властивостями нерозкладних матриць знайдеться натуральне k таке, що . Тоді а отже і .

;

Нехай в моделі (1) в вектора попиту с збільшили першу координату (попит на перший товар зріс), а всі інші координати не змінили, тобто попит на всі інші товари не змінився. Як прореагує на це система і яким буде вектор валового випуску х(с)?

Теорема 2 (про реакцію валового випуску в моделі Леонтьєва на зміну вектора попиту). Нехай матриця А ≥ 0 в моделі (1) нерозкладна і продуктивна.

Якщо а , причому , то

(3)

Причому, якщо максимум в (3) досягається крім j= 1щедля якогось j=i, тобто якщо

при i ≠ 1, то необхідно .

; Доведення: Позначимо . Вже відомо, що .

Тоді

.

Позначимо . З нерівності випливає що

Для всякого і за означенням маємо

.

Підставляючи в даний вираз отримаємо

,

або . (4)

Нехай . Покажемо, що 1 S. Тоді (3) буде доведено.

Від супротивного: припустимо, що 1 . Тоді виконується умова , при . Тому, якщо серед чисел знайдуться ненульові, то оскільки , отримаємо

звідки, врахувавши (4), маємо

, (5)

що суперечить означенню .

Таким чином, якщо 1 , то щоб усунути суперечність в (5), треба покласти як тільки , . Останнє означає, що S – ізольована підмножина і матриця A розкладна, всупереч припущенням теореми.

Отже, 1 S.

Припустимо, що i S, i ≠1, . Оскільки , то , при j=1,2,…,n. При цих припущеннях знову з (4) випливає (5). Тому .

;

 

 


 

Означення Набір векторів (p*, w*, x*, r*, c*) називається станом рівноваги при заданих А, В і функціях попиту c(p, w) та пропозиції r(p, w) якщо виконуються такі умови:

x* = A x* + c*

B x* ≤ r*

p*A + w*B ≥ p* (6)

c* = c(p*, w*)

r* = r(p*, w*)

Очевидно, що рівноважний валовий випуск x* є розв’язком задачі лінійного програмування (2), а рівноважні ціни на фактори w* - розв’язком двоїстої до неї задачі (3). За теорією двоїстості лінійного програмування значення цих задач рівні, (p*, c*) = (w*, r*), де (p*, c*) – максимальна вартість кінцевої продукції, а (w*, r*) – мінімальна вартість первісних факторів. Таким чином, у стані рівноваги національний продукт = національному доходу.

Згідно теорії двоїстості, якщо обмеження задовольняються в точці розв’язку як строга нерівність, то відповідні двоїсті змінні в оптимальному плані є нульовими. Таким чином для прямої задачі (1) маємо

(7)

Ця умова означає, що коли загальний попит на фактор менший наявної пропозиції, то оптимальна оплата цього фактора нульова. Тому підхід лінійного програмування до загальної рівноваги поширюється не тільки на дефіцитні фактори, що мають додатню оплату, але також на вільні фактори, оплата яких = нулю

Для двоїстої задачі аналогічні умови (доповнювальної нежорсткості) записуються таким чином: для j=1, …, n якщо

, то (8)

Тобто, коли товар вироблений із збитком (тобто середні витрати на виробництво, що дорівнюють лівій частині нерівності у твердженні (8), перевищують ціну), то тоді оптимальний випуск цього товару – нульовий, тобто товар не виробляється. Таким чином, підхід лінійного програмування до загальної рівноваги охоплює не тільки товари, що виробляються (при середніх витратах виробництва рівних ціні), але й товари, що не виробляються.

Теорема. Якщо функція попиту c(p, w), функція пропозиції r(p, w) однозначні та неперервні для довільних цін p ≥ 0, w ≥ 0, то стан рівноваги (6) в економіці існує.








Дата добавления: 2015-07-04; просмотров: 651. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия