Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коефіцієнти трудових витрат.





Модель Леонтьєва дає можливість дослідити і деякі проблеми стосовно використання і раціонального розподілу трудових ресурсів, що в свою чергу в значній мірі визначає ефективність економіки.

Маючи на меті доповнення моделі Леонтьєва введемо до розгляду вектор витрат трудових ресурсів l = (l1, l2, …, ln), де числа lj > 0 (коефіцієнт трудових витрат) показує витрати трудових ресурсів в j-ій галузі при функціонуванні її технологічного процесу з одиничною інтенсивністю. Одиницею вимірювання lj можуть бути як людино – дні чи людино – години, так і число працюючих. Технологія такої модифікованої моделі Леонтьєва задається парою (l, А).

Якщо загальний об’єм трудових ресурсів позначити через L, L >; 0, то природно задати до моделі Леонтьєва обмеження на затрат трудових ресурсів

(х, l) <= L, х >= 0.

Тепер модифікована модель Леонтьєва запишеться так:

х – Ах = с, (х, l) <= L, x >= 0 (1)

Питання про існування розв’язку при довільному с >= 0 треба вивчати.

Нехай с >= 0 задає структуру кінцевого попиту. Пронормуємо його і наприклад, умовно || c || = 1. Запишемо задачу оптимізації:

(2)

Можна вважати, що мова йде про намір максимізувати кількість векторів – комплектів с. На меті ми маємо раціональний розподіл трудових ресурсів.

Твердження. Якщо матриця А продуктивна, то задача (2) допустима і має розв’язок.

▼Справді, оскільки А продуктивна то, поклавши x – Аx = с можна розв’язати

Виберемо число так, щоб і

Таке існує, бо L > 0 і, отже вектор є допустимим для задачі (2). Множина всіх допустимих векторів компактна, тому задача (2) має розвязок.

Запишемо двоїсту задачу до (2):

(3)

p = (p1, p2, …, pn) – вектор об’єктивно – зумовлених оцінок трудових витрат, q – число.

Покладемо lq = p(I – A) (cp) = 1. Тоді p = ql(I – A)-1 і

x = (I – А)-1с, а для вектора трудових затрат маємо (х, l) = l (I – A)-1c.

Отже вектор l* = l(I – A)-1 буде вектором повних трудових витрат, j-а координата якого описує повні трудові витрати j-ї галузі економіки.

Можна інтерпретувати вектор p як вектор цін на продукти, а число q як ставку зарплати (зарплата на людино-день чи годину чи одного працівника). Тоді задача (3) зводиться до визначення p і q так, щоб мінімізувати загальний фонд зарплати Lq за умови pj – (aj, p) <= 0 j = 1,2, … n (чистий прибуток будь – якої галузі не є додатним)

Згідно теорії двоїстості

(4)

Оскільки (с, p) = 1, то є не що інше як загальна вартість товарів с при векторі цін p. Отже (4): загальна вартість виробленого об’єму продукції дорівнює загальній сумі грошей які отримали всі учасники виробничого процесу як зарплату.

 

Розглянемо ще один варіант модифікації моделі Леонтьєва, який дозволяє виділити в задачі “споживчу” компоненту.

Будемо розглядати вектор с з як пайок, що йде на оплату праці одного працівника. Якщо x – вектор валового випуску (або вектор інтенсивностей), то матеріальні затрати на виробництво складуть величину Ax + Lc, де L – загальна кількість найманих працівників.

Враховуючи ресурсні обмеження(як матеріальних, так і трудових затрат) запишемо систему

Ax + Lc ≤ x

(l,x) ≤ L (5)

x ≥; 0

Питання існування розв’язку цієї системи вимагає спеціального дослідження. Нормуємо вектор x і введемо нову змінну y = x/l –валовий випуск в розрахунку на 1 працюючого. В нових змінних будемо мати:

Ay + C ≤ y

(l,y) ≤ 1(6)

y ≥;0

Означення: Модель виробництва з врахуванням споживання (5) є

c-продуктивною, якщо система нерівностей (6) є сумісна, тобто має розв’язок.

По суті c-продуктивність означає можливість оплатити працю кожного працівника, тобто можливість видати йому “пайок” в розмірі заданого вектора c.

Теорема Для c-продуктивності моделі (5) з невід’ємною нерозкладною технологічною матрицею A необхідно і достатньо щоб виконувалась нерівність:

l (I-A)-1c ≤ 1 (7)

▼Якщо модель (5) є c-продуктивною, то число Фробеніуса A <;1 і матриця (I-A)-1 існує. Тому з першої нерівності (6) знайдемо:

y = (I-A)-1 c,

а друга нерівність з (6) приводить до (7).

Навпаки, якщо (7) виконана, то

х = (I-A)-1c ≥ 0

є розв’язком системи (6), тобто модель (5) є c-продуктивна.


 







Дата добавления: 2015-07-04; просмотров: 895. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия