Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы теории погрешностей





 

Определение 1.1. Приближенным значением некоторой величины а называется число ар, которое незначительно отличается от точного значения этой величины.

 

Пусть а — точное значение некоторой величины, а ар — ее приближенное значение.

 

Определение 1.2. Абсолютной погрешностью Δ приближенного значения называется модуль разности между точным и приближенным значениями этой величины:

(1.2)

 

Пример 1.1. Если а = 20.25 и ар = 20, то абсолютная погрешность Δ = 0.25.

 

Определение 1.3. Относительной погрешностью приближенной величины ар называется отношение абсолютной погрешности приближенной величины к абсолютной величине ее точного значения:

(1.3)

 

Это равенство можно записать в другой форме:

 

(1.4)

Пример 1.2. Пусть а = 20.25 и ар = 20, тогда относительная погрешность δ = 0.25/20 = 0.0125.

На практике, как правило, точное значение величины неизвестно. Поэтому вместо теоретических понятий абсолютной и относительной погрешностей используют практические понятия предельной абсолютной погрешности и предельной относительной погрешности.

 

Определение 1.4. Под предельной абсолютной погрешностью приближенного числа понимается всякое число Δа, не меньшее абсолютной погрешности этого числа:

 

(1.5)

Неравенство (1.5) позволяет для точного значения величины получить оценку

 

(1.6)

Часто неравенства (1.6) записывают в другой форме

 

(1.7)

 

На практике в качестве предельной абсолютной погрешности выбирают наименьшее из чисел Δа, удовлетворяющих неравенству (1.5), однако это не всегда возможно.

 

Пример 1.3. Оценить предельную абсолютную погрешность приближенного значения ар = 2.72 числа е, если известно, что е = 2.718281828...

Решение.

Очевидно, что | ар — е |< 0.01. Следовательно, можно положить Δа = 0.01. Также справедливо неравенство | ар — е | = |2.720 – 2.71828... | < 0.002. Получаем другое значение предельной аб солютной погрешности Δа = 0.002. Ясно, что следует выбрать наименьшее из найденных значений предельной погрешности, так как это позволит сузить диапазон (1.5), в котором находится точное значение изучаемой величины.

 

Определение 1.5. Предельной относительной погрешностью δа данного приближенного числа называется любое число, не меньшее относительной погрешности этого числа:

δ <= δа (1.8)

Так как справедливо неравенство

 

 

то можно считать, что предельные абсолютная и относительная погрешности связаны формулой

 

или (1.9)

 

Пример 1.4. Пусть длина бруска измерена сантиметровой линейкой и получено приближенное значение ар = = 251 см. Найти предельную относительную погрешность δа.

Решение.

Так как сантиметровая линейка не содержит делений меньше сантиметра, то предельная абсолютная погрешность Δа = 1 см, а точное значение а длины бруска находится в диапазоне 250 см <= а <= 252 см. Хотя точное значение а неизвестно, можно для относительной погрешности записать неравенство

 

 

т. е. считать, что δа = 0,004.

 

Если предельная абсолютная погрешность Δа значительно меньше точного значения |а|, то предельную относительную погрешность определяют приближенно как отношение абсолютной погрешности к приближенному значению:

(1.10)

Часто в формуле (1.10) вместо знака «≈» используют знак точного равенства «=».

Относительную погрешность иногда задают в процентах.

 

Пример 1.5. Определить предельную относительную и абсолютную погрешности значения х = 125 ± 5%.

Решение.

Здесь δа = 5% = 0.05 и Δа = 0.05 • 125 = 6.25. В этом примере мы воспользовались формулой (1.10).

 







Дата добавления: 2015-08-12; просмотров: 1754. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия