Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление площадей плоских фигур





Рис. 9.1.

Напомним геометрический смысл определенного интеграла

.

Если f(x)³0, то определенный интеграл есть площадь криволинейной трапеции, ограниченной графиком функции f(x), прямыми x=a и x=b, а также осью Ox. Если же функция f(x)£ 0, то определенный интеграл будет меньше нуля. Знак минус означает, что криволинейная трапеция расположена ниже оси Ox и ее площадь будет равна S = . Может оказаться, что функция f(x) на отрезке интегрирования несколько раз меняет знак. В этом случае интеграл нужно разбить на сумму интегралов по участкам, на которых подынтегральная функция имеет постоянный знак. Например, площадь фигуры на рис. 9.1 будет иметь вид

S = .

Пример 4. Вычислить площадь фигур, ограниченных линиями:

а) y= sin x, y=0, 0£x£2p; б) y=x–x2, y=0, 0£x£2.

Рис. 9.2

Решение. а) Сделаем чертеж (см.
рис. 9.2). Так как при 0£x£p sin x ³ 0 и при p£x£2p sin x£0, то

(кв. ед.)

 

Рис. 9.3

 

б) Сделаем чертеж (см. рис. 9.3). Найдем точки пересечения параболы с осью Ox:

Из рисунка видно, что

(кв. ед.)

 

Рис. 9.4

Пусть плоская фигура на отрезке [ a,b ] ограничена графиками двух функций y = f 1(x) и y = f 2(x), причем f 2(xf 1(x) (см. рис. 9.4). Тогда искомая площадь вычисляется по формуле:

. (9.7)

Рис. 9.5

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y=x–x 2, y =– x.

Решение. Сделаем чертеж (см. рис. 9.5). Найдем точки пересечения параболы и прямой:

Поскольку на отрезке [ 0;2 ] xx 2 ³ – x, то площадь заданной фигуры будет равна

.

Пример 6. Вычислить площадь фигуры, ограниченной линиями: y =– x 2, y=x–2, y=0.

Рис. 9.6

Решение. Из чертежа (см. рис. 9.6) видно, что искомую площадь S фигуры OAB можно рассматривать как площадь над кривой OAB на отрезке [ 0;2 ]. Однако указанная кривая (ломаная) не задается одним уравнением. Поэтому для нахождения искомой площади разобьем фигуру OAB на две части: OAC и ACB. Найдем абсциссу точки A:

 

Таким образом, точка A имеет координаты (1;–1). После этого находим площадь заданной фигуры:

(кв.ед.).

Рис. 9.7

Заметим, что криволинейная трапеция может образовываться графиком функции также и с осью Oy (см. рис. 9.7). Тогда площадь такой криволинейной трапеции можно записать в виде

. (9.8)

Такой случай следует иметь ввиду, поскольку это может сильно сократить вычисления.

 

В частности, последний пример можно решить относительно оси Oy (переменной y). В этом случае фигура OAB будет ограничена снизу кривой , а сверху – прямой x 2= y + 2. В результате, площадь фигуры будет вычисляться следующим образом:

(кв.ед.)

Рис. 9.8

Пример 7. Вычислить площадь фигуры, ограниченной параболами:

y 2= 2x и y 2 =6x (см. рис. 9.8).

Решение. Будем искать площадь данной фигуры относительно оси Oy. Ординаты точек пересечения линий равны y 1 =–2 и y 2= 2. Следовательно,

(кв. ед.)







Дата добавления: 2015-09-04; просмотров: 1142. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия