Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление площадей плоских фигур





Рис. 9.1.

Напомним геометрический смысл определенного интеграла

.

Если f(x)³0, то определенный интеграл есть площадь криволинейной трапеции, ограниченной графиком функции f(x), прямыми x=a и x=b, а также осью Ox. Если же функция f(x)£ 0, то определенный интеграл будет меньше нуля. Знак минус означает, что криволинейная трапеция расположена ниже оси Ox и ее площадь будет равна S = . Может оказаться, что функция f(x) на отрезке интегрирования несколько раз меняет знак. В этом случае интеграл нужно разбить на сумму интегралов по участкам, на которых подынтегральная функция имеет постоянный знак. Например, площадь фигуры на рис. 9.1 будет иметь вид

S = .

Пример 4. Вычислить площадь фигур, ограниченных линиями:

а) y= sin x, y=0, 0£x£2p; б) y=x–x2, y=0, 0£x£2.

Рис. 9.2

Решение. а) Сделаем чертеж (см.
рис. 9.2). Так как при 0£x£p sin x ³ 0 и при p£x£2p sin x£0, то

(кв. ед.)

 

Рис. 9.3

 

б) Сделаем чертеж (см. рис. 9.3). Найдем точки пересечения параболы с осью Ox:

Из рисунка видно, что

(кв. ед.)

 

Рис. 9.4

Пусть плоская фигура на отрезке [ a,b ] ограничена графиками двух функций y = f 1(x) и y = f 2(x), причем f 2(xf 1(x) (см. рис. 9.4). Тогда искомая площадь вычисляется по формуле:

. (9.7)

Рис. 9.5

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y=x–x 2, y =– x.

Решение. Сделаем чертеж (см. рис. 9.5). Найдем точки пересечения параболы и прямой:

Поскольку на отрезке [ 0;2 ] xx 2 ³ – x, то площадь заданной фигуры будет равна

.

Пример 6. Вычислить площадь фигуры, ограниченной линиями: y =– x 2, y=x–2, y=0.

Рис. 9.6

Решение. Из чертежа (см. рис. 9.6) видно, что искомую площадь S фигуры OAB можно рассматривать как площадь над кривой OAB на отрезке [ 0;2 ]. Однако указанная кривая (ломаная) не задается одним уравнением. Поэтому для нахождения искомой площади разобьем фигуру OAB на две части: OAC и ACB. Найдем абсциссу точки A:

 

Таким образом, точка A имеет координаты (1;–1). После этого находим площадь заданной фигуры:

(кв.ед.).

Рис. 9.7

Заметим, что криволинейная трапеция может образовываться графиком функции также и с осью Oy (см. рис. 9.7). Тогда площадь такой криволинейной трапеции можно записать в виде

. (9.8)

Такой случай следует иметь ввиду, поскольку это может сильно сократить вычисления.

 

В частности, последний пример можно решить относительно оси Oy (переменной y). В этом случае фигура OAB будет ограничена снизу кривой , а сверху – прямой x 2= y + 2. В результате, площадь фигуры будет вычисляться следующим образом:

(кв.ед.)

Рис. 9.8

Пример 7. Вычислить площадь фигуры, ограниченной параболами:

y 2= 2x и y 2 =6x (см. рис. 9.8).

Решение. Будем искать площадь данной фигуры относительно оси Oy. Ординаты точек пересечения линий равны y 1 =–2 и y 2= 2. Следовательно,

(кв. ед.)







Дата добавления: 2015-09-04; просмотров: 1142. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия