Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы





Несобственными интегралами называются 1) интегралы с бесконечными пределами (несобственные интегралы 1-го рода); 2) интегралы от неограниченных функций (несобственные интегралы 2-го рода).

Несобственный интеграл от функции в пределах от до определяется равенством

. (9.35)

Если этот предел существует и конечен, то интеграл называется сходящимся, если же предел не существует или равен бесконечности, то интеграл называется расходящимся.

Аналогично определяются:

и . (9.36)

Если функция имеет бесконечный разрыв в точке отрезка и непрерывна при и при , то несобственный интеграл 2-го рода определяется следующим равенством:

. (9.37)

Несобственный интеграл 2-го рода называется сходящимся, если оба предела в правой части существуют и конечны; если же хотя бы один из интегралов не существует или бесконечен, то несобственный интеграл называется расходящимся.

Пример 19. Вычислить несобственные интегралы (или установить их расходимость): а) ; б) ; в) .

Решение. а) Согласно формуле (9.35) получим

,

т.е. предел не существует и несобственный интеграл расходится.

б) Используя четность подынтегральной функции и формулу (9.36), получим:

.

Следовательно, несобственный интеграл сходится и равен .

в) Используя формулу (9.37), получим:

.

Следовательно, несобственный интеграл расходится.

 

Задание 9.1. Вычислить определенные интегралы:

 

1. а) б) в) .
2. а) б) в) .
3. а) б) в) .
4. а) б) в) .
5. а) б) в) .
6. а) б) в) .
7. а) б) в) .
8. а) б) в) .
9. а) б) в) .
10. а) б) в) .
11. а) б) в) .
12. а) б) в) .
13. а) б) в) .
14. а) б) в) .
15. а) б) в) .
16. а) б) в) .
17. а) б) в) .
18. а) б) в) .
19. а) б) в) .
20. а) б) в) .
21. а) б) в) .
22. а) б) в) .
23. а) б) в) .
24. а) б) в) .
25. а) б) в)

 

Задание 9.2. Найти площадь фигуры, ограниченной заданными линиями:

 

1. x = a cos3 t, y = a sin3 t; 14. y 2 = x, y = x 2;
2. y = ln x, 2 £ x £ 5; 15. y = – x 2+ 2x+3, y = x 24x+3;
3. r = a cos 3j, (a >0); 16. x = 6 (t –sin t), y = 6(1 –cos t) (y³9);
4. xy = 4, x=1, x=4, y=0; 17. y = arсcos x, x = 0, y = 0;
5. xy = 4, x+y–5=0; 18. ;
6. r = cos 2j; 19. y 2 = 2x, y 2 = – x 2+ 4x;
7. y 2 = 16–8x, y2 = 24x+48; 20. ;
8. r = sin 3j; 21. ;
9. y = x 23x, 3x+y–4=0, x=0; 22. ;
10. r = 6cos 3j, r = 3 (r³3); 23. ;
11. x = tg 3x, y = 0, x = p/12; 24. ;
12. r = 2 cos 6j; 25. .
13. ;  
     

Задание 9.3. Найти длину кривой:

1. ; 14. ;
2. x = 5 (t– sin t), y = 5(1 –cos t) при 0 £ x £ p; 15. ;
3. 9y2 = x(3–x)2, между точками пересечения кривой с осью Ox; 16. ;
4. , , 0 £ t £ p, (R > 0); 17. ;
5. ; 18. ;
6. ; 19. ;
7. , между точками пересечения линии с осями координат; 20. ;
8. , между точками пересечения линии с осями координат; 21. ;
9. ; 22.
10. ; 23. ;
11. ; 24. ;
12. ; 25.
13. ;  

 

Задание 9.4. Определить объем тела, образованного вращением вокруг указанной оси плоской фигуры, ограниченной заданными линиями:

 

1. ;
2. ;
3. ;
4. ;
5. ;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

 

Задание 9.5. Вычислить площадь поверхности, образованной вращением линии:

 

1. ;
2. ;
3. ;
4. ;
5. , между точками пересечения линии с осями координат;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

Задание 9.6. Вычислить работу, которую необходимо затратить, чтобы выкачать жидкость удельного веса g из резервуара, имеющего форму

а) конуса вращения, обращенного вершиной вниз, высота которого H, а радиус основания R:

1. H = 6 м, R = 4 м; 6. H = 3 м, R = 7 м;
2. H = 2 м, R = 3 м; 7. H = 3 м, R = 4 м;
3. H = 8 м, R = 3 м; 8. H = 4 м, R = 5 м;
4. H = 2 м, R = 5 м; 9. H = 5 м, R = 6 м.
5. H = 6 м, R = 5 м;  

 

б) полусферы, обращенной выпуклостью вниз, радиус основания которой равен R:

10. R = 10 м; 14. R = 15 м;
11. R = 20 м; 15. R = 6 м;
12. R = 30 м; 16. R = 7 м.
13. R = 4 м; 17. R = 8 м.

 

в) форму цилиндра высоты H и радиуса основания R:

18. H = 5 м, R = 2 м; 22. H = 3 м, R = 2 м;
19. H = 4 м, R = 3 м; 23. H = 3 м, R = 5 м;
20. H = 5 м, R = 3 м; 24. H = 7 м, R = 2 м;
21. H = 6 м, R = 3 м; 25. H = 2 м, R = 4 м;

 

Задание 9.7. Вычислить несобственные интегралы или установить их расходимость:

1. а) , б) ; 14. а) , б) ;
2. а) , б) ; 15. а) , б) ;
3. а) , б) ; 16. а) , б) ;
4. а) , б) ; 17. а) , б) ;
5. а) , б) ; 18. а) , б) ;
6. а) , б) ; 19. а) , б) ;
7. а) , б) ; 20. а) , б) ;
8. а) , б) ; 21. а) , б) ;
9. а) , б) ; 22. а) , б) ;
10. а) , б) ; 23. а) , б) ;
11. а) , б) ; 24. а) , б) ;
12. а) , б) ; 25. а) , б) .
13. а) , б) ;  

 







Дата добавления: 2015-09-04; просмотров: 784. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия