Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы





Несобственными интегралами называются 1) интегралы с бесконечными пределами (несобственные интегралы 1-го рода); 2) интегралы от неограниченных функций (несобственные интегралы 2-го рода).

Несобственный интеграл от функции в пределах от до определяется равенством

. (9.35)

Если этот предел существует и конечен, то интеграл называется сходящимся, если же предел не существует или равен бесконечности, то интеграл называется расходящимся.

Аналогично определяются:

и . (9.36)

Если функция имеет бесконечный разрыв в точке отрезка и непрерывна при и при , то несобственный интеграл 2-го рода определяется следующим равенством:

. (9.37)

Несобственный интеграл 2-го рода называется сходящимся, если оба предела в правой части существуют и конечны; если же хотя бы один из интегралов не существует или бесконечен, то несобственный интеграл называется расходящимся.

Пример 19. Вычислить несобственные интегралы (или установить их расходимость): а) ; б) ; в) .

Решение. а) Согласно формуле (9.35) получим

,

т.е. предел не существует и несобственный интеграл расходится.

б) Используя четность подынтегральной функции и формулу (9.36), получим:

.

Следовательно, несобственный интеграл сходится и равен .

в) Используя формулу (9.37), получим:

.

Следовательно, несобственный интеграл расходится.

 

Задание 9.1. Вычислить определенные интегралы:

 

1. а) б) в) .
2. а) б) в) .
3. а) б) в) .
4. а) б) в) .
5. а) б) в) .
6. а) б) в) .
7. а) б) в) .
8. а) б) в) .
9. а) б) в) .
10. а) б) в) .
11. а) б) в) .
12. а) б) в) .
13. а) б) в) .
14. а) б) в) .
15. а) б) в) .
16. а) б) в) .
17. а) б) в) .
18. а) б) в) .
19. а) б) в) .
20. а) б) в) .
21. а) б) в) .
22. а) б) в) .
23. а) б) в) .
24. а) б) в) .
25. а) б) в)

 

Задание 9.2. Найти площадь фигуры, ограниченной заданными линиями:

 

1. x = a cos3 t, y = a sin3 t; 14. y 2 = x, y = x 2;
2. y = ln x, 2 £ x £ 5; 15. y = – x 2+ 2x+3, y = x 24x+3;
3. r = a cos 3j, (a >0); 16. x = 6 (t –sin t), y = 6(1 –cos t) (y³9);
4. xy = 4, x=1, x=4, y=0; 17. y = arсcos x, x = 0, y = 0;
5. xy = 4, x+y–5=0; 18. ;
6. r = cos 2j; 19. y 2 = 2x, y 2 = – x 2+ 4x;
7. y 2 = 16–8x, y2 = 24x+48; 20. ;
8. r = sin 3j; 21. ;
9. y = x 23x, 3x+y–4=0, x=0; 22. ;
10. r = 6cos 3j, r = 3 (r³3); 23. ;
11. x = tg 3x, y = 0, x = p/12; 24. ;
12. r = 2 cos 6j; 25. .
13. ;  
     

Задание 9.3. Найти длину кривой:

1. ; 14. ;
2. x = 5 (t– sin t), y = 5(1 –cos t) при 0 £ x £ p; 15. ;
3. 9y2 = x(3–x)2, между точками пересечения кривой с осью Ox; 16. ;
4. , , 0 £ t £ p, (R > 0); 17. ;
5. ; 18. ;
6. ; 19. ;
7. , между точками пересечения линии с осями координат; 20. ;
8. , между точками пересечения линии с осями координат; 21. ;
9. ; 22.
10. ; 23. ;
11. ; 24. ;
12. ; 25.
13. ;  

 

Задание 9.4. Определить объем тела, образованного вращением вокруг указанной оси плоской фигуры, ограниченной заданными линиями:

 

1. ;
2. ;
3. ;
4. ;
5. ;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

 

Задание 9.5. Вычислить площадь поверхности, образованной вращением линии:

 

1. ;
2. ;
3. ;
4. ;
5. , между точками пересечения линии с осями координат;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

Задание 9.6. Вычислить работу, которую необходимо затратить, чтобы выкачать жидкость удельного веса g из резервуара, имеющего форму

а) конуса вращения, обращенного вершиной вниз, высота которого H, а радиус основания R:

1. H = 6 м, R = 4 м; 6. H = 3 м, R = 7 м;
2. H = 2 м, R = 3 м; 7. H = 3 м, R = 4 м;
3. H = 8 м, R = 3 м; 8. H = 4 м, R = 5 м;
4. H = 2 м, R = 5 м; 9. H = 5 м, R = 6 м.
5. H = 6 м, R = 5 м;  

 

б) полусферы, обращенной выпуклостью вниз, радиус основания которой равен R:

10. R = 10 м; 14. R = 15 м;
11. R = 20 м; 15. R = 6 м;
12. R = 30 м; 16. R = 7 м.
13. R = 4 м; 17. R = 8 м.

 

в) форму цилиндра высоты H и радиуса основания R:

18. H = 5 м, R = 2 м; 22. H = 3 м, R = 2 м;
19. H = 4 м, R = 3 м; 23. H = 3 м, R = 5 м;
20. H = 5 м, R = 3 м; 24. H = 7 м, R = 2 м;
21. H = 6 м, R = 3 м; 25. H = 2 м, R = 4 м;

 

Задание 9.7. Вычислить несобственные интегралы или установить их расходимость:

1. а) , б) ; 14. а) , б) ;
2. а) , б) ; 15. а) , б) ;
3. а) , б) ; 16. а) , б) ;
4. а) , б) ; 17. а) , б) ;
5. а) , б) ; 18. а) , б) ;
6. а) , б) ; 19. а) , б) ;
7. а) , б) ; 20. а) , б) ;
8. а) , б) ; 21. а) , б) ;
9. а) , б) ; 22. а) , б) ;
10. а) , б) ; 23. а) , б) ;
11. а) , б) ; 24. а) , б) ;
12. а) , б) ; 25. а) , б) .
13. а) , б) ;  

 







Дата добавления: 2015-09-04; просмотров: 784. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия