Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы





Несобственными интегралами называются 1) интегралы с бесконечными пределами (несобственные интегралы 1-го рода); 2) интегралы от неограниченных функций (несобственные интегралы 2-го рода).

Несобственный интеграл от функции в пределах от до определяется равенством

. (9.35)

Если этот предел существует и конечен, то интеграл называется сходящимся, если же предел не существует или равен бесконечности, то интеграл называется расходящимся.

Аналогично определяются:

и . (9.36)

Если функция имеет бесконечный разрыв в точке отрезка и непрерывна при и при , то несобственный интеграл 2-го рода определяется следующим равенством:

. (9.37)

Несобственный интеграл 2-го рода называется сходящимся, если оба предела в правой части существуют и конечны; если же хотя бы один из интегралов не существует или бесконечен, то несобственный интеграл называется расходящимся.

Пример 19. Вычислить несобственные интегралы (или установить их расходимость): а) ; б) ; в) .

Решение. а) Согласно формуле (9.35) получим

,

т.е. предел не существует и несобственный интеграл расходится.

б) Используя четность подынтегральной функции и формулу (9.36), получим:

.

Следовательно, несобственный интеграл сходится и равен .

в) Используя формулу (9.37), получим:

.

Следовательно, несобственный интеграл расходится.

 

Задание 9.1. Вычислить определенные интегралы:

 

1. а) б) в) .
2. а) б) в) .
3. а) б) в) .
4. а) б) в) .
5. а) б) в) .
6. а) б) в) .
7. а) б) в) .
8. а) б) в) .
9. а) б) в) .
10. а) б) в) .
11. а) б) в) .
12. а) б) в) .
13. а) б) в) .
14. а) б) в) .
15. а) б) в) .
16. а) б) в) .
17. а) б) в) .
18. а) б) в) .
19. а) б) в) .
20. а) б) в) .
21. а) б) в) .
22. а) б) в) .
23. а) б) в) .
24. а) б) в) .
25. а) б) в)

 

Задание 9.2. Найти площадь фигуры, ограниченной заданными линиями:

 

1. x = a cos3 t, y = a sin3 t; 14. y 2 = x, y = x 2;
2. y = ln x, 2 £ x £ 5; 15. y = – x 2+ 2x+3, y = x 24x+3;
3. r = a cos 3j, (a >0); 16. x = 6 (t –sin t), y = 6(1 –cos t) (y³9);
4. xy = 4, x=1, x=4, y=0; 17. y = arсcos x, x = 0, y = 0;
5. xy = 4, x+y–5=0; 18. ;
6. r = cos 2j; 19. y 2 = 2x, y 2 = – x 2+ 4x;
7. y 2 = 16–8x, y2 = 24x+48; 20. ;
8. r = sin 3j; 21. ;
9. y = x 23x, 3x+y–4=0, x=0; 22. ;
10. r = 6cos 3j, r = 3 (r³3); 23. ;
11. x = tg 3x, y = 0, x = p/12; 24. ;
12. r = 2 cos 6j; 25. .
13. ;  
     

Задание 9.3. Найти длину кривой:

1. ; 14. ;
2. x = 5 (t– sin t), y = 5(1 –cos t) при 0 £ x £ p; 15. ;
3. 9y2 = x(3–x)2, между точками пересечения кривой с осью Ox; 16. ;
4. , , 0 £ t £ p, (R > 0); 17. ;
5. ; 18. ;
6. ; 19. ;
7. , между точками пересечения линии с осями координат; 20. ;
8. , между точками пересечения линии с осями координат; 21. ;
9. ; 22.
10. ; 23. ;
11. ; 24. ;
12. ; 25.
13. ;  

 

Задание 9.4. Определить объем тела, образованного вращением вокруг указанной оси плоской фигуры, ограниченной заданными линиями:

 

1. ;
2. ;
3. ;
4. ;
5. ;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

 

Задание 9.5. Вычислить площадь поверхности, образованной вращением линии:

 

1. ;
2. ;
3. ;
4. ;
5. , между точками пересечения линии с осями координат;
6. ;
7. ;
8. ;
9. ;
10. ;
11. ;
12. ;
13. ;
14. ;
15. ;
16. ;
17. ;
18. ;
19. ;
20. ;
21. ;
22. ;
23. ;
24. ;
25. .

Задание 9.6. Вычислить работу, которую необходимо затратить, чтобы выкачать жидкость удельного веса g из резервуара, имеющего форму

а) конуса вращения, обращенного вершиной вниз, высота которого H, а радиус основания R:

1. H = 6 м, R = 4 м; 6. H = 3 м, R = 7 м;
2. H = 2 м, R = 3 м; 7. H = 3 м, R = 4 м;
3. H = 8 м, R = 3 м; 8. H = 4 м, R = 5 м;
4. H = 2 м, R = 5 м; 9. H = 5 м, R = 6 м.
5. H = 6 м, R = 5 м;  

 

б) полусферы, обращенной выпуклостью вниз, радиус основания которой равен R:

10. R = 10 м; 14. R = 15 м;
11. R = 20 м; 15. R = 6 м;
12. R = 30 м; 16. R = 7 м.
13. R = 4 м; 17. R = 8 м.

 

в) форму цилиндра высоты H и радиуса основания R:

18. H = 5 м, R = 2 м; 22. H = 3 м, R = 2 м;
19. H = 4 м, R = 3 м; 23. H = 3 м, R = 5 м;
20. H = 5 м, R = 3 м; 24. H = 7 м, R = 2 м;
21. H = 6 м, R = 3 м; 25. H = 2 м, R = 4 м;

 

Задание 9.7. Вычислить несобственные интегралы или установить их расходимость:

1. а) , б) ; 14. а) , б) ;
2. а) , б) ; 15. а) , б) ;
3. а) , б) ; 16. а) , б) ;
4. а) , б) ; 17. а) , б) ;
5. а) , б) ; 18. а) , б) ;
6. а) , б) ; 19. а) , б) ;
7. а) , б) ; 20. а) , б) ;
8. а) , б) ; 21. а) , б) ;
9. а) , б) ; 22. а) , б) ;
10. а) , б) ; 23. а) , б) ;
11. а) , б) ; 24. а) , б) ;
12. а) , б) ; 25. а) , б) .
13. а) , б) ;  

 







Дата добавления: 2015-09-04; просмотров: 784. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия