Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность попадания случайной точки в произвольную область





Перепишем соотношение (**) § 9 так:

fit, ц)АхАу=РАвсо.

Отсюда заключаем: про­изведение /(£, ц) Ах At/ есть вероятность попада­ния случайной точки в прямоугольник со сторо­нами Ах и А у.

Пусть в плоскости хОу задана произвольная об- Рнс. 17 ласть/5. Обозначим собы­

тие, состоящее в попада­нии случайной точки в эту область, так: (X, Y)cD.

Разобьем область D на п элементарных областей пря­мыми, параллельными оси Оу, находящимися на расстоя­нии Ах одна от другой, и прямыми, параллельными оси Ох, находящимися на расстоянии Ау одна от другой (рис. 17) (для простоты предполагается, что эти прямые пересекают контур области не более чем в двух точках). Так как
события, состоящие в попадании случайной точки в эле­ментарные области, несовместны, то вероятность попада­ния в область
D приближенно (сумма элементарных об­ластей приближенно равна области D!) равна сумме вероятностей попаданий точки в элементарные области
:

Р((Х, V)cD)*t'jkif(ll, t^Ajс Ay.

Переходя к пределу при Ах —>-0 и А у —>-0, получим Р((X, У) с D) = J J f{x, у) dx dy. (*)

(О)

Итак, для того чтобы вычислить вероятность попада­ния случайной точки (X; Y) в область D, достаточно

найти двойной интеграл по области D от функции

/(*» У)-

Геометрически равенство (*) можно истолковать так: вероятность попадания слу­чайной точки (X; У) в область D равна объему тела, огра­ниченного сверху поверхно­стью z = /( х, у), основанием которого служит проекция этой поверхности на плоскость хОу.

Замечание. Подынтегральное выражение f ( х, у) dx dy назы­вают элементом вероятности. Как следует нз предыдущего, элемент вероятности определяет вероятность попадания случайной точки в эле­ментарный прямоугольник со сторонами dx к dy.







Дата добавления: 2015-09-06; просмотров: 944. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия