Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)





Пусть генеральные совокупности X и У распре­

делены нормально, причем их дисперсии неизвестны. Например, по выборкам малого объема нельзя получить хорошие оценки генеральных дисперсий. По этой при­чине метод сравнения средних, изложенный в § 11, при­менить нельзя.

Однако если дополнительно предположить, что неиз­вестные генеральные дисперсии равны между собой, то можно построить критерий (Стью­дента) сравнения средних. Например, если сравниваются средние размеры двух партий деталей, изготовленных на одном и том же станке, то естественно допустить, что дисперсии контролируемых размеров одинаковы.

Если же нет оснований считать дисперсии одинако­выми, то, прежде чем сравнивать средние, сле­дует, пользуясь критерием Фишера—Снедекора (см. §8), предварительно проверить гипотезу о равенстве гене­ральных дисперсий.

Итак, в предположении, что генеральные дисперсии одинаковы, требуется проверить нулевую гипотезу Н0: М (X) = М (У). Другими словами, требуется установить, значимо или незначимо различаются выборочные средние х и у, найденные по независимым малым выборкам объе­мов пит.

В качестве критерия проверки нулевой гипотезы при­мем случайную величину

Доказано, что величина Т при справедливости нулевой гипотезы имеет ^-распределение Стьюдента с = — 2 степенями свободы.







Дата добавления: 2015-09-06; просмотров: 2035. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия