Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А. Дисперсия генеральной совокупности известна.





Пусть генеральная совокупность X распределена нор­мально, причем генеральная средняя а хотя и неизвестна, но имеются основания предполагать, что она равна ги­потетическому (предполагаемому) значению а0. Например, если X —совокупность размеров х( партии деталей, изгото­вляемых станком-автоматом, то можно предположить, что генеральная средняя а этих размеров равна проектному размеру а0. Чтобы проверить это предположение, находят выборочную среднюю х и устанавливают, значимо или незначимо различаются х и а0. Если различие окажется незначимым, то станок обеспечивает в среднем проектный размер; если различие значимое, то станок требует под- наладки.

Предположим, что дисперсия генеральной совокуп­ности известна, например, из предшествующего опыта, или найдена теоретически, или вычислена по выборке большого объема (по большой выборке можно получить достаточно хорошую оценку дисперсии).

Итак, пусть из нормальной генеральной совокупности извлечена выборка объема п и по ней найдена выбороч­ная средняя х, причем генеральная дисперсия <та известна. Требуется по выборочной средней при заданном уровне значимости проверить нулевую гипотезу Н0:а = а0 о ра­венстве генеральной средней а гипотетическому значе­нию а0.

Учитывая, что выборочная средняя является несме­щенной оценкой генеральной средней (см. гл. XVI, § 5), т. е. М(Х)=а, нулевую гипотезу можно записать так: М (Х) = а0.

Таким образом, требуется проверить, что математи­ческое ожидание выборочной средней равно гипотети­ческой генеральной средней. Другими словами, надо уста­новить, значимо или незначимо различаются выборочная и генеральная средние.

В качестве критерия проверки нулевой гипотезы при­мем случайную величину

U=(X-a0)/o(X) = (X-a0)VT/a,

которая распределена нормально, причем при справедли­вости нулевой гипотезы M(U) = 0, o(U)— 1.

Поскольку здесь критическая область строится в за­висимости от вида конкурирующей гипотезы* так же как в § 10, ограничимся формулировкой правил проверки нулевой гипотезы, обозначив значение критерия U, вы­численное по данным наблюдений, через U на6л.

Правило 1. Для того чтобы при заданном уровне зна­чимости а проверить нулевую гипотезу Н0:а = а0 о ра­венстве генеральной средней а нормальной совокупности с известной дисперсией а2 гипотетическому значению а0 при конкурирующей гипотезе Ht:a^a0, надо вычислить наблюдаемое значение критерия:

^набл = (^—а0) Vn/o







Дата добавления: 2015-09-06; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия