Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А. Дисперсия генеральной совокупности известна.





Пусть генеральная совокупность X распределена нор­мально, причем генеральная средняя а хотя и неизвестна, но имеются основания предполагать, что она равна ги­потетическому (предполагаемому) значению а0. Например, если X —совокупность размеров х( партии деталей, изгото­вляемых станком-автоматом, то можно предположить, что генеральная средняя а этих размеров равна проектному размеру а0. Чтобы проверить это предположение, находят выборочную среднюю х и устанавливают, значимо или незначимо различаются х и а0. Если различие окажется незначимым, то станок обеспечивает в среднем проектный размер; если различие значимое, то станок требует под- наладки.

Предположим, что дисперсия генеральной совокуп­ности известна, например, из предшествующего опыта, или найдена теоретически, или вычислена по выборке большого объема (по большой выборке можно получить достаточно хорошую оценку дисперсии).

Итак, пусть из нормальной генеральной совокупности извлечена выборка объема п и по ней найдена выбороч­ная средняя х, причем генеральная дисперсия <та известна. Требуется по выборочной средней при заданном уровне значимости проверить нулевую гипотезу Н0:а = а0 о ра­венстве генеральной средней а гипотетическому значе­нию а0.

Учитывая, что выборочная средняя является несме­щенной оценкой генеральной средней (см. гл. XVI, § 5), т. е. М(Х)=а, нулевую гипотезу можно записать так: М (Х) = а0.

Таким образом, требуется проверить, что математи­ческое ожидание выборочной средней равно гипотети­ческой генеральной средней. Другими словами, надо уста­новить, значимо или незначимо различаются выборочная и генеральная средние.

В качестве критерия проверки нулевой гипотезы при­мем случайную величину

U=(X-a0)/o(X) = (X-a0)VT/a,

которая распределена нормально, причем при справедли­вости нулевой гипотезы M(U) = 0, o(U)— 1.

Поскольку здесь критическая область строится в за­висимости от вида конкурирующей гипотезы* так же как в § 10, ограничимся формулировкой правил проверки нулевой гипотезы, обозначив значение критерия U, вы­численное по данным наблюдений, через U на6л.

Правило 1. Для того чтобы при заданном уровне зна­чимости а проверить нулевую гипотезу Н0:а = а0 о ра­венстве генеральной средней а нормальной совокупности с известной дисперсией а2 гипотетическому значению а0 при конкурирующей гипотезе Ht:a^a0, надо вычислить наблюдаемое значение критерия:

^набл = (^—а0) Vn/o







Дата добавления: 2015-09-06; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия