Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Следовательно,





Ф(2КР) = (1—«)/2.

Отсюда заключаем: для того чтобы найти правую гра­ницу двусторонней критической области (zKp), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1—а)/2. Тогда двусторонняя критическая область определяется нера­венствами

2 < — 2Кр, 2 £кр,

или равносильным неравенством |2| > zKP, а область при­нятия нулевой гипотезы — неравенством — гкр < Z < zKP, или равносильным неравенством 12 | < гкр.

.Обозначим значение критерия, вычисленное поданным наблюдений, через 2на6л и сформулируем правило про­верки нулевой гипотезы.

Правило 1. Для того чтобы при заданном уровне зна­чимости а проверить нулевую гипотезу Н0: М (X) = М (V) о равенстве математических ожиданий двух нормальных генеральных совокупностей с известными дисперсиями при конкурирующей гипотезе Нх\ М(Х)фМ(У), надо вычислить наблюденное значение критерия 2набл

X U

=. и по таблице функции Лапласа найти

D(X)/n + D(Y)/m *

критическую точку по равенству Фгкр = (1—а)/2.

Если \ZHa6x\<z KP—нет оснований отвергнуть нуле­вую гипотезу.

Если 12набл | > *кр—нулевую гипотезу отвергают.

Пример 1. По двум независимым выборкам, объемы которых соответственно равны п = 60 н т = 50, извлеченным нз нормальных генеральных совокупностей, найдены выборочные средние *=1250 и ^=1275. Генеральные дисперсии известны: D(X) = 120, D(K)=100. При уровне значимости 0,01 проверить нулевую гипотезу Н0: М(Х) = ~М (К), прн конкурирующей гипотезе Hi. М (X) Ф М (К).

Решение. Найдем наблюдаемое значение критерия:

*~У 1250—1275,ое

у D\X)/n + D (Y)/m У 120/60+ 100/50


По условию, конкурирующая гипотеза имеет вид М ( X ) ф М (У), поэтому критическая область — двусторонняя.

Найдем правую критическую точку:

Ф (2кр) = (1 —а)/2 = (1 —0,01)/2 = 0,495.

По таблице функции Лапласа (см. приложение 2) находим гкр = 2,58.

Так как | 2Иабл I > 2кр— нулевую гипотезу отвергаем. Другими словами, выборочные средние различаются значимо.

Второй случай. Нулевая гипотеза Я0: М (X)— = М (У). Конкурирующая гипотеза Ht: М ( X) > Л1 (У).

На практике такой случай имеет место, если про­фессиональные соображения позволяют предположить, что генеральная средняя од-

ной совокупности больше Ус(

генеральной средней Дру- 1 с.,,

гой. Например, если введено ® г

Усовершенствование техноло- Рис. 2в

гического процесса, то есте­ственно допустить, что оно приведет к увеличению вы­пуска продукции. В этом случае строят правостороннюю критическую область, исходя из требования, чтобы вероят­ность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости (рис. 26):

Р (Z > гкр) = а. (****)

Покажем, как найти критическую точку с помощью функции Лапласа. Воспользуемся соотношением (***):

Р (0 < Z < гкр) + Р (Z > гкр) = 1/2.

В силу (**) и (****) имеем

Ф(гкр) + а= 1/2.







Дата добавления: 2015-09-06; просмотров: 470. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия