Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Індивідуальне завдання № 2.7





Студент повинен розв'язати одну з наведених нижче задач, вибравши її за своїм номером у журналі групи.

      -2        
16.   -1            
    -3            
      -1      
18.   -2         -7
    -1          
      -8          
20.     -12       -5
    -5            
      -1 3        
22.     -3 3        
      -2 4          
      -2 4        
24.     -3 2        
      -1 -       -3  
      3 -2      
26.     5 -1        
      4 -5        
      2 3          
28.     1 2        
      1 1          
               
30.   -2 -3       -1  
    -1 -2          
    1 1            
15.   1 -2            
    2 5 -2        
    2 -3        
17. -1 -2 3        
    6 -9        
    -2 -3            
19.   11 0          
    -5 -2          
    3 -5       -  
21.   7 -3          
    4 2 -16      
    2 -2          
23.   5 -3 -2      
    1 1     -    
    -5 2          
25.   -4 1          
    7 -4            
    2 3 -            
27.   2 7 -            
    2 11 -            
    2 4 1          
29.   2 -2 1          
    2 16 1          
    -1 1        
31.   1 -2        
    -3 4        

Знайти фундаментальну систему розв'язків і частковий розв'язок лінійної системи рівнянь:

      -2 -3       -4          
1.     -1 -4   2.   -7          
        -1       -3     -3    
      -3 -4       -5     4 0  
3.     -2 -1   4.   -9     0 1  
                -4 -1   -4 1  

    З -1 -2        
5.     -4 -3   З  
      -3 -1      
    -2   З      
7.              
  З -5 З          
    -2   З   О  
9. З -5            
    -3 -1          
               
11.   -5   З      
    -2 З     З    
      -2 -3      
1З.     -1 -4        
        -1   З  
    -1 З   О    
15.   -1            
               
    -4   З        
17.   -7          
    -3   -2        
    -5 З      
19.   -9        
    -4 -1   З   З
          О    
21. З     З        
    З          
    -1   З   О
23. З -2        
    -1 -3        
      З    
25. З -8        
    -5 -3       З
    -1 З     О
27.            
  З -2 -2          
    -2 З      
29.   -7       З
  З -5 -1   З    
      -3 -4        
З1.     -2 -1   З  
  З     З      

 

        О     О  
б. З     З О      
    З -3 З -2      
    -1   З   О О
8. З -2   О      
    -1 -3 -3    
      О З  
10. З -8     О  
    -5 -3     З   З
    -1 З     О О
12.     О        
  З -2 -2 -4      
    -2 З О    
14.   -7     О З
  З -5 -1        
      -3 -4 О  
1б.     -2 О     З
  З       -    
      -2 О   З    
18.     -1 -4 О    
    З   -4 З    
      -3 -4 О    
2О. З   -2 О        
              З  
    З -1 О        
22.     -4 -3 О З
      -3 -3    
    -2   З О О    
24.     О        
  З -5 З З        
    -2   О З О
2б. З -5     О  
    -3 -1     З  
        О    
28.   -5   О З      
    -2 З -2 З   З  
      -2 О   З    
ЗО.     -1 -4 О  
        -4 З З

Контрольні запитання

1. За якими правилами виконуються операції над матрицями?

2. Які властивості визначників?

3. У чому полягає спосіб обчислення визначників розкладанням за рядками (стовпцями)?

4. Які властивості зворотної матриці?

5. Що таке ранг і лінійна залежність (незалежність) матриці?

6. У чому полягає розв'язання систем лінійних рівнянь методом Кра­мера й методом зворотної матриці?

7. У чому зміст теорем Кронекера-Капеллі?

8. У чому полягає розв'язок систем лінійних рівнянь методом Гаус­са?

9. Як знаходиться загальний розв'язок однорідної системи лінійних рівнянь?

10. Як знаходиться загальний розв'язок неоднорідної системи ліній­них рівнянь?

В розділі розглянуті основи мат­ричного аналізу, структура й спо­соби розв 'язування систем лінійних алгебраїчних рівнянь


3. ВЕКТОРНА АЛГЕБРА

Окрім скалярних величин зустрічаються й такі, для визначення яких, крім чисель­ного значення, необхідно знати також їхній напрямок у просторі. Такі величини називаються векторними.







Дата добавления: 2015-09-06; просмотров: 417. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия