Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Індивідуальне завдання № 2.7





Студент повинен розв'язати одну з наведених нижче задач, вибравши її за своїм номером у журналі групи.

      -2        
16.   -1            
    -3            
      -1      
18.   -2         -7
    -1          
      -8          
20.     -12       -5
    -5            
      -1 3        
22.     -3 3        
      -2 4          
      -2 4        
24.     -3 2        
      -1 -       -3  
      3 -2      
26.     5 -1        
      4 -5        
      2 3          
28.     1 2        
      1 1          
               
30.   -2 -3       -1  
    -1 -2          
    1 1            
15.   1 -2            
    2 5 -2        
    2 -3        
17. -1 -2 3        
    6 -9        
    -2 -3            
19.   11 0          
    -5 -2          
    3 -5       -  
21.   7 -3          
    4 2 -16      
    2 -2          
23.   5 -3 -2      
    1 1     -    
    -5 2          
25.   -4 1          
    7 -4            
    2 3 -            
27.   2 7 -            
    2 11 -            
    2 4 1          
29.   2 -2 1          
    2 16 1          
    -1 1        
31.   1 -2        
    -3 4        

Знайти фундаментальну систему розв'язків і частковий розв'язок лінійної системи рівнянь:

      -2 -3       -4          
1.     -1 -4   2.   -7          
        -1       -3     -3    
      -3 -4       -5     4 0  
3.     -2 -1   4.   -9     0 1  
                -4 -1   -4 1  

    З -1 -2        
5.     -4 -3   З  
      -3 -1      
    -2   З      
7.              
  З -5 З          
    -2   З   О  
9. З -5            
    -3 -1          
               
11.   -5   З      
    -2 З     З    
      -2 -3      
1З.     -1 -4        
        -1   З  
    -1 З   О    
15.   -1            
               
    -4   З        
17.   -7          
    -3   -2        
    -5 З      
19.   -9        
    -4 -1   З   З
          О    
21. З     З        
    З          
    -1   З   О
23. З -2        
    -1 -3        
      З    
25. З -8        
    -5 -3       З
    -1 З     О
27.            
  З -2 -2          
    -2 З      
29.   -7       З
  З -5 -1   З    
      -3 -4        
З1.     -2 -1   З  
  З     З      

 

        О     О  
б. З     З О      
    З -3 З -2      
    -1   З   О О
8. З -2   О      
    -1 -3 -3    
      О З  
10. З -8     О  
    -5 -3     З   З
    -1 З     О О
12.     О        
  З -2 -2 -4      
    -2 З О    
14.   -7     О З
  З -5 -1        
      -3 -4 О  
1б.     -2 О     З
  З       -    
      -2 О   З    
18.     -1 -4 О    
    З   -4 З    
      -3 -4 О    
2О. З   -2 О        
              З  
    З -1 О        
22.     -4 -3 О З
      -3 -3    
    -2   З О О    
24.     О        
  З -5 З З        
    -2   О З О
2б. З -5     О  
    -3 -1     З  
        О    
28.   -5   О З      
    -2 З -2 З   З  
      -2 О   З    
ЗО.     -1 -4 О  
        -4 З З

Контрольні запитання

1. За якими правилами виконуються операції над матрицями?

2. Які властивості визначників?

3. У чому полягає спосіб обчислення визначників розкладанням за рядками (стовпцями)?

4. Які властивості зворотної матриці?

5. Що таке ранг і лінійна залежність (незалежність) матриці?

6. У чому полягає розв'язання систем лінійних рівнянь методом Кра­мера й методом зворотної матриці?

7. У чому зміст теорем Кронекера-Капеллі?

8. У чому полягає розв'язок систем лінійних рівнянь методом Гаус­са?

9. Як знаходиться загальний розв'язок однорідної системи лінійних рівнянь?

10. Як знаходиться загальний розв'язок неоднорідної системи ліній­них рівнянь?

В розділі розглянуті основи мат­ричного аналізу, структура й спо­соби розв 'язування систем лінійних алгебраїчних рівнянь


3. ВЕКТОРНА АЛГЕБРА

Окрім скалярних величин зустрічаються й такі, для визначення яких, крім чисель­ного значення, необхідно знати також їхній напрямок у просторі. Такі величини називаються векторними.







Дата добавления: 2015-09-06; просмотров: 417. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия