Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные векторы и собственные значения оператора





Пусть – линейный оператор, переводящий пространство в себя. Ненулевой вектор , удовлетворяющий равенству , называется собственным вектором оператора , а число - соответствующим ему собственным значением. В произвольном базисе столбец координат собственного вектора является ненулевым решением СЛАУ Эта система имеет нетривиальное решение тогда и только тогда, когда . Собственные значения являются корнями этого уравнения, которое называется характеристическим уравнением матрицы . Характеристическое уравнение не меняется при смене базиса, т.е. зависит только от оператора . Коэффициенты этого уравнения являются инвариантами матрицы оператора .

Задача 1(1). Найти собственные векторы оператора , заданного матрицей .

Решение. Составим характеристическое уравнение . . Корни этого уравнения являются собственными значениями оператора .

Решим СЛАУ для каждого собственного значения. При СЛАУ эквивалентна уравнению с общим решением . При получим уравнение с общим решением

Ответ: .

Задача 1(2). Найти собственные векторы оператора , заданного матрицей .

Решение. Корни характеристического уравнения комплексные , поэтому действительных собственных векторов нет.

Задача 1(3). Найти собственные векторы оператора , заданного матрицей .

Решение. Характеристическое уравнение имеет вид:

.

Все собственные значения оператора равны 1.

СЛАУ при эквивалентна уравнению с общим решением . Эти решения образуют подпространство размерности 2, состоящее из собственных векторов с собственным значением 1 (собственное подпространство).

Ответ: .

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Найти собственные векторы операторов, заданных следующими матрицами:

1.1. . 1.2. . 1.3. . 1.4. .

1.5. . 1.6. .







Дата добавления: 2015-09-07; просмотров: 727. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия