Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Граница эффективных портфелей.





Выберем n акций, зададим два начальных условия:

а) длительность будущего холдингового периода;

б) количество N шагов расчета в прошлом.

 

После этого вычислим 3 необходимые характеристики каждой акции: , и . Зададим после этого произвольную комбинацию весов этих акций (их сумма должна равняться единице) и сформируем некий портфель K. Тогда по выведенным выше формулам можно вычислить ожидаемую доходность и стандартное отклонение этого портфеля. Возьмем координатную плоскость и отложим на ней эти значения. В итоге получим точку К на графике с координатами [ ; ] (рис. 8).

 

Рис. 8. Граница эффективных портфелей

 

Изменим веса выбранных n акций, получим уже другой портфель (например, портфель N), для которого также можно вычислить ожидаемую доходность и риск и отложить полученные значения на графике. В результате получим точку N.

Введем еще одно допущение модели Г. Марковица:

Допущение 6: Каждую акцию портфеля можно разделить на неограниченное число частей, и инвестор в состоянии приобрести любую часть акции. Иными словами, вес каждой акции портфеля может принимать любое значение. Это позволяет из ограниченного числа акций за счет изменения их весов формировать бесконечно много портфелей.

Если для каждого портфеля, созданного из выбранных n акций за счет комбинации их весов, определить ожидаемую доходность и стандартное отклонение, отложить их величины на графике, то получим совокупность точек - область существования портфелей, определяющую все возможные портфели для выбранного количества ценных бумаг. Эта зона имеет характерное "зонтикообразное" очертание. В зависимости от количества и характеристик ценных бумаг, входящих в портфель (ожидаемые доходности, дисперсии, ковариации) эта зона может смещаться влево-вправо или вверх-вниз, поворачиваться, становиться более пологой или крутой.

Теорема о существовании эффективного множества. Задача инвестора – сформировать из n выбранных акций единственный оптимальный портфель, обеспечивающий этому инвестору максимальную полезность. Ключ к решению проблемы выбора оптимального портфеля лежит в сформулированной Г. Марковицем теореме о существовании эффективного набора портфелей, так называемой границы эффективных портфелей.

Суть теоремы сводится к выводу о том, что любой инвестор должен выбрать из всего бесконечного набора портфелей, сформированных на базе n акций, такой портфель, который удовлетворяет одному из двух (но не двум сразу!) условий:

1) Обеспечивает максимальную ожидаемую доходность при каждом выбранном уровне риска;

2) Обеспечивает минимальный риск для каждой выбранной величины ожидаемой доходности.

 

Портфели, удовлетворяющие этим условиям, Марковиц относит к эффективным портфелям.

Фактически, суть теоремы Марковица сводится к следующему: если инвестор выбрал n акций, по известным алгоритмам вычислил необходимые характеристики [ ; ; ] для каждой акции портфеля, а затем произвольно задал какое-то значение ожидаемой доходности портфеля = Е*, то найдется только одна комбинация ценных бумаг в портфеле, минимизирующая риск портфеля при заданном значении доходности Е*.

Набор портфелей, которые минимизируют уровень риска при каждой величине ожидаемой доходности, образует так называемое эффективное множество. Если отобразить эффективное множество на координатной плоскости, то получим границу эффективных портфелей (ГЭП) - на рисунке ГЭП совпадает с левой границей области существования портфелей.







Дата добавления: 2015-10-01; просмотров: 919. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия