Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 4.3.





А ┐A — тавтология, А & ┐ А — противоречие, А → ┐ А — выполнимая формула, она истинна при А = Л.

Теорема 4.1. Пусть А — некоторая формула. Тогда:

1. Если А — тавтология, то ┐А — противоречие, и наоборот;

2. Если А — противоречие, то ┐A — тавтология, и наоборот;

3. Если А — тавтология, то неверно, что А — противоречие, но не наоборот;

4. Если А — противоречие, то неверно, что А — тавтология, но не наоборот.

Доказательство. Очевидно из определений.

Теорема 4.2. Если формулы А и АВ — тавтологии, то формула В — тавтология.

Доказательство. От противного. Пусть 1(В) = Л. Но 1(А) = И, так как А — тавтология, значит, 1(АВ) = Л, что противоречит предположению о том, что АВ — тавтология.

Можно перечислить наиболее важные тавтологии (А, В, С – произвольные формулы):

1) А®А;

2) А®(В®А);

3) (А®В)®((В®С)®(А®С)) (цепное рассуждение);

4) (А®(В®С))®((А®В)®(А®С));

5) (А&В)®А, (А&В)®В; (4.1)

6) А®(В®(А&В));

7) А®(АÚВ), В®(АÚВ);

8) (┐В ®┐А)®((┐В®А)®В);

9) ((А ®В)®А)®А (закон Пирса).

Немаловажную роль играют логическое следование и логическая эквивалентность формул.

Говорят, что формула В логически следует из формулы А (обозначается А В), если формула В имеет значение И при всех интерпретациях, при которых формула А имеет значение И. Говорят, что формулы А и В логически эквивалентны (обозначается А В, или просто А = В), если они являются логическим следствием друг друга. Логически эквивалентные формулы имеют одинаковые значения при любой интерпретации.

Теорема 4.3. (Р® Q)Û(┐РÚQ).

Доказательство. Для доказательства достаточно проверить, что формулы действительно имеют одинаковые истин­ностные значения при всех интерпретациях.

Р Q PQ ┐Р ┐Р Q
И И И Л И
Л И И И И
И Л Л Л Л
Л Л И И И

Теорема 4.4. Если А, В, С — любые формулы, то имеют место следующие логические эквивалент­ности:

1. A A=A, A & A = A;

2. А В = В А, A &В = B& A;

3. А С) = (А В) С,A &(В&С) = (A &В)&С;

4. A (B&C)=(A B)&(A C), A &(B C) = (A &B) (A &C);

5. (A&B) A=A, (A В)& A = A;

6. A Л = A, A &;Л = Л; (4.2)

7. A И = И, A & И = A;

8. ┐ (┐ A) = A; ┐ (A Ú B) = ┐ A&┐ B;

9. ┐ (A&B) = ┐ A ┐B,

10. A ┐A = И, A & ┐ A = Л

Доказательство всех эквивалентностей (они нам уже знакомы по разделу 3) непосредственно проводится построением таблиц истинности.

Анализируя все полученные результаты, можем, таким образом, заметить, что алгебра {И,JI}; ,&,┐ является булевой алгеброй, которая называется алгеб­рой высказываний.

Теорема 4.5. P1 &... & Pn Q тогда и только тогда, когда (P1 &... & Pn) Q тавтология.

Доказательство. Необходимость. Пусть I(P1 &... & Pn) = И. Тогда

I(Q) = И и I(P1 &... & Pn Q) = И.

Пусть I(P1 &... & Pn) = Л. Тогда I(P1 &... & Pn Q) = И при любой интерпретации I. Таким образом, формула P1 &... & Pn Q общезначима.

Достаточность. Пусть I(P1 &... & Pn) = И. Тогда I(Q) = И, иначе бы формула P1 &... & Pn Q не была бы тавтологией. Таким образом, формула Q — логическое следствие формулы P1 &... & Pn.

Теорема 4.6. P1 &... & Pn Q тогда и только тогда, когда P1 &... & Pn & ┐Q — противоречие.

Доказательство. По предыдущей теореме P1 &... & Pn Q тогда и только тогда, когда формула P1 &... & Pn Q — тавтология. По первой теореме подраздела 4.1.3 формула P1 &... & Pn Q является тавтоло­гией тогда и только тогда, когда формула ┐ (P1 &... & Pn Q) является противоречием. Имеем:

(P1 &... & Pn Q) = ┐((P1 &... & Pn) Ú Q)=

= ┐┐(P1 &... & Pn) & ┐Q)=P1 &... & Pn & ┐Q.

Определим преобразование логических фигур с помощью подстановки.

Пусть А — некоторая формула, в которую входит переменная х (обозначается А (... х...)) или неко­торая подформула В (обозначается A (… В...)), и пусть С — некоторая формула. Тогда

А (...х...){ С / / х }

обозначает формулу, полученную из формулы А подстановкой формулы С вместо всех вхождений переменной х, а А (... B...){ С / B } обозначает формулу, полученную из формулы А подстановкой формулы С вместо некоторых (в частности, вместо одного) вхождений подформулы В.

Теорема 4.7. Если А(... х...) — тавтология и В — любая формула, то А(...х...){В//х} — тав­тология.

Доказательство. Пусть С = A (... х...){В // х}. Пусть I — интерпретация С (она не содержит x). Пусть . Тогда , но = И, следовательно I(C) = И.

Теорема 4.8. Если А (... В...) и В = С, a D = А (... В...){ С/В }, то А=D.

Доказательство. Пусть I — любая интерпретация. Тогда I (В) = I (С), значит I (A) = I (D).







Дата добавления: 2015-10-15; просмотров: 516. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия