Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Или интегральный закон распределения)





 

Задание закона распределения СВ в виде ряда распределения не всегда приемлемо, потому что для НСВ множество её возможных значений бесконечно и сплошь заполняет некоторый промежуток. Кроме того, как будет показано в дальнейшем для НСВ Р(Х=х)=0, то есть отдельное значение НСВ обладает нулевой вероятностью. Это означает, что все значения НСВ, образующие бесконечное множество, имеют одинаковую и равную нулю вероятность.

Как быть? Несмотря на равенство нулю отдельных значений НСВ, можно находить вероятности её значений в различных интервалах, в которых она обладает различными и отличными от нуля вероятностями.

Таким образом, для НСВ также можно определить закон распределения вероятностей, но в ином, чем для ДСВ виде.

Для количественной характеристики распределения НСВ Х рассматривают не вероятность события (Х=х), а вероятность события (Х<х), где х - произвольное действительное число (т.к. Р(Х=х)=0, но это будет доказано позже).

Для нас представляет интерес вероятность события, состоящего в том, что в результате опыта СВ Х приняла значение, которое оказалось меньше фиксированного х. Если х изменяется произвольно, то и вероятность выполнения неравенства Х<x в общем случае будет изменяться. Следовательно, вероятность Р(Х<x) является функцией аргумента х. Обозначим эту функцию как F(x).

Функцией распределения (интегральной функцией распределения) называется функция F(х), определяющая для каждого значения х вероятность того, что СВ Х примет значение, меньшее х, т.е. F(x)= P (X<x) (4) геометрически:

F(x) - есть вероятность того, что случайная точка Х окажется левее фиксируемой точки.

Итак, СВ Х можно рассматривать как случайную точку на числовой оси.

Пусть на оси выбрана конкретная точка х, тогда в результате опыта случайная точка Х может оказаться левее или правее выбранной нами точки. Очевидно, что вероятность того, что случайная точка Х окажется левее точки х будет зависеть от положения точки х, то есть являться функцией аргумента х.

Для ДСВ Х, которая может принимать значения х1, х2,...,хn, функция распределения примет вид

(5)

Где неравенство хi<x под знаком суммы означает, что суммирование касается тех значений хi, величина которых меньше х.

Поясним эту формулу, исходя из определения F(x). Предположим, что аргумент х принял какое-то определенное значение, но такое, что выполняется неравенство . Тогда левее числа х на числовой оси окажутся только те значения, которые имеют индекс 1,2,3,… ,i. Поэтому неравенство X<x выполняется, если величина Х примет значение xk , где k=1,2,3,…,i. Таким образом, событие X<x наступит, если наступит любое, неважно какое, из событий X=x1, X=x2, X=x3, …, X=xi. Так как эти события несовместные, то по теореме сложения вероятностей имеем .

Функция распределения (интегральная функция распределения) существует как для дискретных, так и для непрерывных СВ. F(х) является универсальной формой закона распределения.

 

(*) СВ Х называется непрерывной, если ее F(x)- непрерывная, кусочно дифференцируемая функция с непрерывной производной.

 

Построим функцию распределения, ряд которой представлен в (2), то есть

Хi х1 х2 ....
(2)
хn

Рi р1 р2 .... Рn

 

при
при
при
при
при
при

 

Для примера 1 построим функцию распределения случайной величины Х - числа рекламных объявлений.

 

хi 0 1 2 3 4 5 ()
pi 0,1 0,2 0,3 0,2 0,1 0,1  

 

при

Случайная величина Х не принимает значений, меньших 0. Следовательно, если х 0, то событие Х < х - невозможно, а вероятность его равна нулю. Поэтому функция распределения случайной величины Х для всех значений х 0 также равна 0.

При х £ 0 имеем F(x) =0, т.к. F(x)= Р (х<0)=0;

При 0<х £1 имеем F(x) = Р (х<1)=Р (х=0)=0,1;

При 1<х£2 имеем F(x) = Р (х<2)=Р(или 0, или 1)=Р(х=0)+ Р(х=1)=0,1+0,2=0,3;

При 2<х£3 имеем F(x) = Р (х<3)=Р(или 0, или 1, или 2)= 0,1+0,2+0,3=0,6.

При 3<х£4 имеем F(x) = Р (х<4)=Р(или 0, или 1, или 2, или 3)= 0,1+0,2+0,3+0,2=0,8.

При 4<х£5 имеем F(x) = Р (х<5)=Р(или 0, или 1, или 2, или 3, или 4)= 0,1+0,2+0,3+0,2+0,1=0,9.

При х>5 F(x) =Р (х>5)= Р(или 0, или 1, или 2, или 3, или 4, или 5)= 0,1+0,2+0,3+0,2+0,1+0,1=1,0.

 

Запишем ее в табличной форме.

Таблица 3

Функция распределения (интегральная функция распределения) для примера 3

x x£0 0<х 1 1<x 2 2<х 3 3<х 4 4<х 5 x>5
F(x)   0,1 0,3 0,6 0,8 0,9  

или F(x) можно аналитически записать так:

F(x)=

Изобразим график построенной функции:

 

 

Рис2

Рис.2 показывает, что интегральная функция - неубывающая и равна единице при х большем наибольшего возможного значения случайной величины. В нашем примере график F(x) имеет ступенчатый вид.

Для ДСВ график представляет собой разрывную ступенчатую линию. Когда переменная Х проходит через какое-либо из возможных значений СВ, значение функции распределения меняется скачкообразно, то есть функция имеет скачок в тех точках, в которых СВ принимает конкретное значение согласно ряду распределения, причем величина скачка равна вероятности этого значения. Сумма величин всех скачков равна 1. В интервалах между значениями СВ функция F(x) постоянна.

 







Дата добавления: 2015-10-15; просмотров: 936. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия