Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Окремі випадки рівноваги системи сил





Рівновага довільної системи паралельних сил у просторі

 

У випадку, коли всі сили паралельні між собою (система паралельних сил), осі системи координат доцільно вибрати так, щоб одна з осей (наприклад вісь ) була паралельна силам (рис. 6.1).

 


Рис. 6.1

 

Тоді перші дві і остання умови (6.2) будуть виконуватись як тотожності, що дає наступні (три) умови рівноваги:

; ; . (6.3)

Отже, відповідно до (6.3), для рівноваги просторової системи паралельних сил необхідно і достатньо, щоб сума проекцій сил на вісь, паралельну силам, і суми моментів цих сил відносно двох інших координатних осей дорівнювали нулю.

Умови рівноваги довільної плоскої системи сил

Як відомо (п. 5.5), довільна система сил у площині в загальному випадку зводиться у центрі О до сили , яка дорівнює головному вектору системи, і пари сил з моментом , який дорівнює головному моменту системи. При цьому головний вектор належить площині дії пари , що співпадає з площиною дії сил системи.

Для даної системи сил існують три окремі випадки рівноваги.

Перша (основна) форма умов рівноваги. Припустимо, що площина дії системи сил співпадає з координатною площиною (рис. 6.2) системи координат .

 

 


Рис. 6.2

 

Проекції сил системи, а також радіусів-векторів точок їх прикладання на вісь в даному випадку дорівнюють нулю. Тому система умов рівноваги (6.2) перетворюється в наступну:

; ; . (6.4)

Система (6.4) аналітичних (алгебраїчних) умов рівноваги твердого тіла формулюється таким чином: для рівноваги довільної системи сил у площині необхідно і достатньо, щоб суми проекцій усіх сил на кожну з координатних осей Ox i Oy і алгебраїчна сума їх моментів відносно осі (або довільного центра О в площині дії сил системи ), дорівнювали нулю.

Друга форма умов рівноваги. У даному випадку умови рівноваги формулюються так: для рівноваги довільної плоскої системи сил необхідно і достатньо, щоб алгебраїчні суми моментів сил відносно будь-яких двох точок у площині дії сил і сума проекцій цих сил на вісь, яка не перпендикулярна до прямої, що проходить через обрані точки, дорівнювали нулю. Для площини Е дії сил системи, точок В, С на ній і осі Ox (рис. 6.3) буде:

; ; , (6.5)

де - проекція головного вектора системи сил у точці В на вісь Ох.

 


Рис. 6.3

 

Необхідність цих умов очевидна, бо якщо будь-яка з умов не буде виконуватися, то або в точці В головний вектор системи 0, або головний момент 0 (чи ) і тоді рівноваги тіла не відбувається.

Достатність умов (6.5) доведемо наступним чином. Якщо виконуються тільки перші з двох умов (6.5), тобто і , то така система сил може мати лише рівнодійну (рис. 6.3), лінія дії якої проходить через точки В і С. Оскільки вісь Ox проходить під кутом до відрізка ВС, то остання умова (6.5) може бути виконана тільки коли , тобто коли . Це призводить до одночасного виконання всіх умов (6.5), що забезпечують рівновагу тіла безумовно.

Третя форма умов рівноваги. Ця форма умов рівноваги формулюється таким чином: для рівноваги довільної плоскої системи сил необхідно і достатньо, щоб алгебраїчні суми моментів усіх сил відносно будь-яких трьох точок, наприклад В,С,D, що не лежать на одній прямій, дорівнювали нулю (рис. 6.4):

; ; , (6.6)

де В,С,D - точки приведення системи сил.

 


Рис. 6.4

 

 

Необхідність цих умов, враховуючи (5.11), очевидна, бо при одночасному виконанні, наприклад двох перших умов, головний момент системи при може дорівнювати нулю у третій точці D тільки коли головний вектор системи сил дорівнює нулю. Тому при одночасному виконанні умов (6.6) виконуються умови (6.1) рівноваги тіла і воно буде у рівновазі.

Достатність умов (6.6) випливає з того, що при їх виконанні система сил не знаходилася б у рівновазі тільки у випадку, коли її відмінна від нуля рівнодійна проходила одночасно через всі три точки BCD площини Е, що неможливо за визначенням.

 







Дата добавления: 2015-10-15; просмотров: 811. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия