Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса




В основе метода Гаусса используются элементарные преобразования матрицы коэффициентов системы с целью приведения ее к более простому виду (например, треугольному), решение которой не представляет труда. В качестве таких преобразований используются:

а) вычитание из одной строки другой, умноженной на константу, отличную от нуля;

б) перестановка строк;

в) умножение строки на число, отличное от нуля.

Пусть имеется система линейных уравнений 3-го порядка:

и матрица коэффициентов системы не имеет нулевых диагональных элементов, и ее определитель отличен от нуля. Тогда решение может быть получено следующим образом.

1. Разделим все элементы первой строки на с11 (включая y):

2. Исключим элементы первого столбца из второго и третьего уравнений системы (элементы c21 и c31). Для этого элементы первой строки умножим на c21 и c31, т. е. получим:

и

3. Затем из элементов второй и третьей строки вычтем соответствующие элементы полученных уравнений, т. е.

Введем переобозначение для второго и третьего уравнений системы:

,

где , , ,

, , .

4. Вновь полученную вторую строку разделим на d11:

5. Исключим элемент d21 из третьей строки. Для этого элементы второй строки умножим на d21:

.

6. Затем из элементов третьей строки вычтем элементы полученного уравнения.

7. Из последнего уравнения найдем a2, из второго a1 и из первого – a0.

,

,

.

Пример решения системы линейных алгебраических уравнений методом Гаусса.

Имеем систему (32):

1. Зададим системную переменную, исходные значения матрицы системы и вектора свободных членов

2. Сформируем промежуточные матрицы для переобозначения:

3. Решим систему и высветим результат:

4. Осуществим проверку решения:

Результаты совпали, следовательно, решение верно.







Дата добавления: 2014-11-12; просмотров: 367. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия