Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса





В основе метода Гаусса используются элементарные преобразования матрицы коэффициентов системы с целью приведения ее к более простому виду (например, треугольному), решение которой не представляет труда. В качестве таких преобразований используются:

а) вычитание из одной строки другой, умноженной на константу, отличную от нуля;

б) перестановка строк;

в) умножение строки на число, отличное от нуля.

Пусть имеется система линейных уравнений 3-го порядка:

и матрица коэффициентов системы не имеет нулевых диагональных элементов, и ее определитель отличен от нуля. Тогда решение может быть получено следующим образом.

1. Разделим все элементы первой строки на с 11 (включая y):

2. Исключим элементы первого столбца из второго и третьего уравнений системы (элементы c21 и c31). Для этого элементы первой строки умножим на c21 и c31, т. е. получим:

и

3. Затем из элементов второй и третьей строки вычтем соответствующие элементы полученных уравнений, т. е.

Введем переобозначение для второго и третьего уравнений системы:

,

где , , ,

, , .

4. Вновь полученную вторую строку разделим на d 11:

5. Исключим элемент d 21 из третьей строки. Для этого элементы второй строки умножим на d 21:

.

6. Затем из элементов третьей строки вычтем элементы полученного уравнения.

7. Из последнего уравнения найдем a 2, из второго a 1 и из первого – a 0.

,

,

.

Пример решения системы линейных алгебраических уравнений методом Гаусса.

Имеем систему (32):

1. Зададим системную переменную, исходные значения матрицы системы и вектора свободных членов

2. Сформируем промежуточные матрицы для переобозначения:

3. Решим систему и высветим результат:

4. Осуществим проверку решения:

Результаты совпали, следовательно, решение верно.







Дата добавления: 2014-11-12; просмотров: 630. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия