Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод обращения матриц





Пусть имеется система линейных уравнений

(33).

Если уравнение (33) умножить слева и справа на обратную матрицу C–1

,

то, учитывая, что

,

где E – единичная матрица, получим формулу для решения системы методом обращения матриц:

. (34)

Сложность этого метода заключается в нахождении обратной матрицы С-1, которая рассчитывается следующим образом.

Находится транспонированная матрица СТ.

Если , то .

Затем рассчитывается матрица алгебраических дополнений:

,

где Сi, j – алгебраические дополнения элементов Сi, j (), которые находятся следующим образом: из транспонированной матрицы вычеркивается i -я строка и j -й столбец, определитель оставшейся части записывается в элемент матрицы алгебраических дополнений С*i, j. Знак «–» ставится перед определителем в том случае, если сумма индексов определителя является нечетным числом.

, , ,

, , ,

, , .

 

Элементы обратной матрицы ищутся из элементов матрицы алгебраических дополнений по формуле:

,

где det C – определитель матрицы С.

В Mathcad существует встроенная функция для расчета обратной матрицы. Она вызывается нажатием кнопки Inverse (Инверсия) на панели Matrix (Матрицы) (рис. 41).

Рис. 41. Вызов вычисления обратной матрицы

Так каксогласно (34) ,

имеем

,

где zij – элементы обратной матрицы С-1.

Проведя умножение матрицы на столбец, получим выражения для каждого коэффициента:

,

,

.

Пример решения системы линейных алгебраических уравнений методом обращения матриц.

Имеем систему (32):

1. Зададим системную переменную, исходные значения матрицы системы и вектора свободных членов

2. Транспонируем матрицу:

3. Найдем матрицу алгебраических дополнений:

4. Найдем обратную матрицу и осуществим проверку с помощью встроенной функции Mathcad:

5. Найдем решение системы:

6. Осуществим проверку решения:

Результаты совпали, следовательно, решение верно.

 







Дата добавления: 2014-11-12; просмотров: 1291. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия