Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод обращения матриц





Пусть имеется система линейных уравнений

(33).

Если уравнение (33) умножить слева и справа на обратную матрицу C–1

,

то, учитывая, что

,

где E – единичная матрица, получим формулу для решения системы методом обращения матриц:

. (34)

Сложность этого метода заключается в нахождении обратной матрицы С-1, которая рассчитывается следующим образом.

Находится транспонированная матрица СТ.

Если , то .

Затем рассчитывается матрица алгебраических дополнений:

,

где Сi, j – алгебраические дополнения элементов Сi, j (), которые находятся следующим образом: из транспонированной матрицы вычеркивается i -я строка и j -й столбец, определитель оставшейся части записывается в элемент матрицы алгебраических дополнений С*i, j. Знак «–» ставится перед определителем в том случае, если сумма индексов определителя является нечетным числом.

, , ,

, , ,

, , .

 

Элементы обратной матрицы ищутся из элементов матрицы алгебраических дополнений по формуле:

,

где det C – определитель матрицы С.

В Mathcad существует встроенная функция для расчета обратной матрицы. Она вызывается нажатием кнопки Inverse (Инверсия) на панели Matrix (Матрицы) (рис. 41).

Рис. 41. Вызов вычисления обратной матрицы

Так каксогласно (34) ,

имеем

,

где zij – элементы обратной матрицы С-1.

Проведя умножение матрицы на столбец, получим выражения для каждого коэффициента:

,

,

.

Пример решения системы линейных алгебраических уравнений методом обращения матриц.

Имеем систему (32):

1. Зададим системную переменную, исходные значения матрицы системы и вектора свободных членов

2. Транспонируем матрицу:

3. Найдем матрицу алгебраических дополнений:

4. Найдем обратную матрицу и осуществим проверку с помощью встроенной функции Mathcad:

5. Найдем решение системы:

6. Осуществим проверку решения:

Результаты совпали, следовательно, решение верно.

 







Дата добавления: 2014-11-12; просмотров: 1291. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия