Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка адекватности модели





Независимо от вида выбранной модели вопрос о возможности ее применения для прогнозирования экономического показателя может быть решен только после установления ее адекватности. Проверка адекватности выбранных моделей реальному процессу строится на анализе случайного компонента. Случайный компонент получается после выделения из исследуемого ряда тренда и периодической составляющей. Если временной ряд не имеет сезонных колебаний, то для аддитивной модели

yt = ut + еt ряд остатков может быть получен как отклонения фактических уровней уt от расчетных ŷ: et=yt- ŷt

При использовании кривых роста ŷt вычисляют, подставляя в уравнение кривой соответствующие значения времени.

Считается, что модель адекватна описываемому процессу, если значе­ния остаточного компонента удовлетворяют свойствам случайности, независимости и если распределены по нормальному закону распределения.

При правильном выборе вида тренда отклонения от него будут носить случайный характер и изменение остаточной случайной величины не будет связано с изменением времени. По выборке, полученной для всех временных значений на рассматриваемом интервале, проверяется гипотеза о независимости последовательности значений et, от времени или наличии тенденции в ее изменении. Для проверки этого свойства может быть использован критерий определения тенденции с помощью «восходящих» и «нисходящих» серий.

Если вид функции тренда выбран неудачно, то последовательные зна­чения остатков ряда могут не обладать свойствами независимости, так как могут коррелировать между собой. В этом случае говорят, что имеет место автокорреляция ошибок.

Наиболее распространенным приемом обнаружения автокорреляции является метод Дарвина — Уотсона, связанный с автокорреляцией между соседними остаточными членами ряда. Критерий Дарбина — Уотсона определяется по формуле d = ∑(et - et-1)2/∑et2

Применение критерия основано на сравнении величины d ≤ 2, рассчитанной по формуле, с теоретическими значениями d1 и d2, взятыми из таблицы 31, где приведены значения критерия Дарбина—Уотсона при доверительной вероятности 0,95.

Таблица 31 – Значения критерия Дарбина — Уотсона при доверительной вероятности 0,95

К'=1 К'= 2 К' = 3
d1 d2 d1 d2 d1 d2
  1,08 1,36 0,95 1,54 0,82 1,75
  1,13 1,38 1,02 1,54 0,9 1,71
  1,18 1,4 1,08 1,53 0,97 1,68
  1,22 1,42 1,13 1,54 1,03 1,67
  1,26 1,44 1,17 1,54 1,08 1,66
  1,29 1,45 1,21 1,55 1,12 1,66

 

Если в остатках имеется положительная автокорреляция, то при этом возможны три случая:

• если d < d1 то гипотеза об отсутствии автокорреляции отвергается;

• если d > d2, то гипотеза об отсутствии автокорреляции не отвергается;

• если d1 < d < d2, то нет достаточных оснований для принятия решений.

В том случае, когда расчетное значение критерия d > 2, то в еt существует отрицательная автокорреляция и с значениями d1 и d2 сравнивается величина 4 - d.

В связи с тем, что временные ряды экономических показателей невелики, на основе анализа показателей асимметрии и эксцесса можно произвести проверку ряда остатков на нормальность распределения по формулам

где А — выборочная характеристика асимметрии, Э — выборочная характеристика эксцесса, σА — среднеквадратическая ошибка выбороч­ной характеристики асимметрии, σЭ — среднеквадратическая ошибка выборочной характеристики эксцесса.

Если одновременно выполняются неравенства

|А| < 1,5σА; |э + 6/(n +1)| < 1,5σЭ,

то гипотеза о нормальном характере распределения случайного ком­понента не отвергается. Если выполняется хотя бы одно из неравенств:

| А | > 2 σА; |Э + 6/(n+1)| >2 σЭ,

то гипотеза о нормальном характере распределения отвергается.







Дата добавления: 2015-09-15; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия