Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Пуассона





ДСВ Х, кот. может принимать только целые неотрицат. значения с вероятностями Pm = P(X=m) = , называется распределенной по закону Пуассона с параметром распределения λ, где λ=np. В отличие от биномиальн. распределения здесь СВ может принимать бесконечное мн-во значений, представляющ. собой бесконечн. последовательность целых чисел(0, 1, 2, 3, … и т.д.). Закон Пуассона описывает число событий m, происходящ. за одинаковые промежутки времени. При этом полагается, что события появляются независимо друг от друга с постоянной средней интенсивностью, кот. характеризуется параметром λ=np. Ряд распределения закона Пуассона имеет вид:

X       m
p e—λ λ e—λ 2 e—λ)/2! m e—λ)/m!

Определение закона Пуассона корректно, т.к. выполнена. Действительно функцию ex можно разложить в ряд, кот. сходится для любого Х. Поэтому eλ = = 1+ λ + λ2/2! + …+ λm/m! +… Тогда = eλ = eλ eλ =1. Найдем мат. ожидание и дисперсию СВ Х, распределенной по закону Пуассона. M(X) = = = = λ eλ = λeλ eλ = λ = np. Суммирование начинается с m=1, т.к. 1-ый член суммы соответствующий m=0 равен 0. Дисперсию СВ Х найдем по формуле D(X) = M(X2) – (M(X))2. M(X2) = = eλ = eλ = λ2 eλ + λ eλ = λ2 eλ eλ + λ eλ eλ = λ2 +λ. Тогда D(X) = λ2 +λ — λ2 = λ = np. Т.о. мат. ожидание и дисперсия СВ, распределенной по закону Пуассона, совпадают и равны параметру этого распределения λ.

 







Дата добавления: 2015-08-12; просмотров: 418. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия