Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Пуассона





ДСВ Х, кот. может принимать только целые неотрицат. значения с вероятностями Pm = P(X=m) = , называется распределенной по закону Пуассона с параметром распределения λ, где λ=np. В отличие от биномиальн. распределения здесь СВ может принимать бесконечное мн-во значений, представляющ. собой бесконечн. последовательность целых чисел(0, 1, 2, 3, … и т.д.). Закон Пуассона описывает число событий m, происходящ. за одинаковые промежутки времени. При этом полагается, что события появляются независимо друг от друга с постоянной средней интенсивностью, кот. характеризуется параметром λ=np. Ряд распределения закона Пуассона имеет вид:

X       m
p e—λ λ e—λ 2 e—λ)/2! m e—λ)/m!

Определение закона Пуассона корректно, т.к. выполнена. Действительно функцию ex можно разложить в ряд, кот. сходится для любого Х. Поэтому eλ = = 1+ λ + λ2/2! + …+ λm/m! +… Тогда = eλ = eλ eλ =1. Найдем мат. ожидание и дисперсию СВ Х, распределенной по закону Пуассона. M(X) = = = = λ eλ = λeλ eλ = λ = np. Суммирование начинается с m=1, т.к. 1-ый член суммы соответствующий m=0 равен 0. Дисперсию СВ Х найдем по формуле D(X) = M(X2) – (M(X))2. M(X2) = = eλ = eλ = λ2 eλ + λ eλ = λ2 eλ eλ + λ eλ eλ = λ2 +λ. Тогда D(X) = λ2 +λ — λ2 = λ = np. Т.о. мат. ожидание и дисперсия СВ, распределенной по закону Пуассона, совпадают и равны параметру этого распределения λ.

 







Дата добавления: 2015-08-12; просмотров: 418. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия