Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярний добуток векторів і його властивості





Вище ми розглянули множення вектора на число. Але у багатьох задачах зустрічається операція множення вектора на вектор. Але при цьому результат може бути як числом, так і вектором. Тому розглядають два види множення ве­кторів: скалярне й векторне.

Нехай дані два вектори а і Ь, кут між якими дорівнює (— (аЬ

Скалярним добутком векторів а і Ь називається число, рівне добуткові довжин цих векторів на косинус кута між ними. Скалярний добуток познача­


 

 


• СОБ(.
а

ється а • Ь. Отже, а • Ь


 

 


Рис. 3.24. Скалярний добуток векторів

 

Якщо один із векторів нульовий, то скалярний добуток вважається рів­ним нулю.

Розглянемо властивості скалярного добутку.

1. Скалярний добуток двох векторів підкоряється комутативному зако­нові, тобто для будь-яких векторів а і Ь а • Ь = Ь • а.

2. Для будь-якого числа X і будь-яких векторів а і Ь маємо:

Л(а • Ь) = (а)• Ь = а •(Ь).

3. Для будь-яких векторів а,Ь, с виконується рівність:

(а + Ь)• с = а • с + Ь • с.


 

 


а

4. Для будь-якого вектора а виконується співвідношення а — а • а

ш • а — а.

—л/а — уЛ

Із цієї властивості зокрема випливає


 

 


5. Скалярний добуток двох векторів дорівнює нулю тоді й тільки тоді, коли дорівнює нулю один зі співмножників або вектори перпендикулярні. Це властивість очевидна з визначення скалярного добутку. Таким чином, необхідною й достатньою умовою ортогональності двох ненульових векторів є рівність нулю їхнього скалярного добутку.







Дата добавления: 2015-09-06; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия