Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярний добуток векторів і його властивості





Вище ми розглянули множення вектора на число. Але у багатьох задачах зустрічається операція множення вектора на вектор. Але при цьому результат може бути як числом, так і вектором. Тому розглядають два види множення ве­кторів: скалярне й векторне.

Нехай дані два вектори а і Ь, кут між якими дорівнює (— (аЬ

Скалярним добутком векторів а і Ь називається число, рівне добуткові довжин цих векторів на косинус кута між ними. Скалярний добуток познача­


 

 


• СОБ(.
а

ється а • Ь. Отже, а • Ь


 

 


Рис. 3.24. Скалярний добуток векторів

 

Якщо один із векторів нульовий, то скалярний добуток вважається рів­ним нулю.

Розглянемо властивості скалярного добутку.

1. Скалярний добуток двох векторів підкоряється комутативному зако­нові, тобто для будь-яких векторів а і Ь а • Ь = Ь • а.

2. Для будь-якого числа X і будь-яких векторів а і Ь маємо:

Л(а • Ь) = (а)• Ь = а •(Ь).

3. Для будь-яких векторів а,Ь, с виконується рівність:

(а + Ь)• с = а • с + Ь • с.


 

 


а

4. Для будь-якого вектора а виконується співвідношення а — а • а

ш • а — а.

—л/а — уЛ

Із цієї властивості зокрема випливає


 

 


5. Скалярний добуток двох векторів дорівнює нулю тоді й тільки тоді, коли дорівнює нулю один зі співмножників або вектори перпендикулярні. Це властивість очевидна з визначення скалярного добутку. Таким чином, необхідною й достатньою умовою ортогональності двох ненульових векторів є рівність нулю їхнього скалярного добутку.







Дата добавления: 2015-09-06; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия