Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричная запись линейных операторов. Собственные значения и собственные векторы линейных операторов.





Выберем в пространстве V базис . Пусть – произвольный элемент из V и – разложение по данному базису. Пусть А – линейный оператор из . Тогда А А . Полагая, что

А (7.1)

получим

А

Таким образом, если А и элемент имеет координаты , то

(7.2)

Рассмотрим квадратную матрицу А с элементами : Эта матрица называется матрицей линейного оператора в заданном базисе .

Наряду с ранее указанным способом записи линейного оператора А используется, при заданном базисе , следующая матричная форма: , причем, если , то , где , , определяется с помощью соотношения (7.2), а элементы матрицы А определяются по формулам (7.1).

Пусть — линейное пространство над полем , — линейное преобразование.

Собственным вектором линейного преобразования называется такой ненулевой вектор , что для некоторого

Собственным значением линейного преобразования называется такое число , для которого существует собственный вектор, то есть уравнение имеет ненулевое решение .

Упрощённо говоря, собственный вектор — любой ненулевой вектор x, который отображается оператором в коллинеарный , а соответствующий скаляр называется собственным значением оператора.

Собственным подпространством линейного преобразования для данного собственного числа (или отвечающим этому числу) называется множество всех собственных векторов , соответствующих данному собственному числу (дополненное нулевым вектором). Обозначим его . По определению,

где — единичный оператор.

Корневым вектором линейного преобразования для данного собственного значения называется такой ненулевой вектор , что для некоторого натурального числа

Если является наименьшим из таких натуральных чисел (то есть ), то называется высотой корневого вектора .

Корневым подпространством линейного преобразования для данного собственного числа называется множество всех корневых векторов , соответствующих данному собственному числу (дополненное нулевым вектором). Обозначим его . По определению,

где








Дата добавления: 2015-09-07; просмотров: 778. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия