Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

К каноническому виду





Квадратичной формой от n -переменных называется сумма следующего вида

. (3.1)

Запись вида (3.1) называется координатной формой записи квадратичной формы. Симметрическая матрица ( при всех ) называется матрицей квадратичной формы.

Если обозначить векторы , , то квадратичную форму (3.1) можно представить в виде

. (3.2)

Запись вида (3.2) называется матричной формой записи квадратичной формы (3.1). Рангом квадратичной формы (3.1) называется ранг ее матрицы. Форма называется невырожденной (вырожденной), если матрица этой формы является невырожденной (вырожденной) матрицей.

Если имеется некоторое невырожденное линейное преобразование

, (3.3)

где – невырожденная матрица, , то квадратичная форма (3.2) примет вид

, . (3.4)

Квадратичная форма называется канонической, если она не содержит парных произведений вида разных переменных, а содержит только квадраты переменных ( называются каноническими переменными):

. (3.5)

Любая квадратичная форма с помощью некоторого неособенного линейного преобразования может быть приведена к каноническому виду.

Метод Лагранжа (последовательного выделения полных квадратов) приведения квадратичной формы к каноническому виду состоит в следующем. Если , то группируя слагаемые, содержащие переменную , получаем

.

Выделяя полный квадрат по в сумме , имеем

.

Обозначая , получаем

, (3.6)

где – квадратичная форма от (n –1)-переменных .

Выделяем в форме полный квадрат по переменной :

,

где , – квадратичная форма от (n –2)-переменных . И так далее. В результате такого алгоритма (последовательного выделения полных квадратов) получим канонический вид (3.5).

Задание 20. Привести квадратичную форму к каноническому виду методом Лагранжа, указать соответствующее неособенное линейное преобразование. Сделать проверку.

 

20.1. .
20.2. .
20.3. .
20.4. .
20.5. .
20.6. .
20.7. .
20.8. .
20.9. .
20.10. .
20.11. .
20.12. .
20.13. .
20.14. .
20.15. .
20.16. .
20.17. .
20.18. .
20.19. .
20.20. .






Дата добавления: 2015-09-07; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия