Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Редуцирование направлений, линий и площадей на плоскость в проекции Гаусса





 

Геодезические сети вычисляют в СНГ на плоскостях координатных зон в проекции Гаусса. Но прежде, чем элементы сетей (углы, расстояния) получить на плоскости, их относят (редуцируют) на поверхность референц-эллипсоида. С этой целью измеренные на земной поверхности расстояния приводят к горизонту, затем относят на уровень моря (поверхность квазигеоида) и на поверхность референц-эллипсоида.

Переход от расстояний на эллипсоиде к расстояниям на плоскости в проекции Гаусса-Крюгера связан с понятием масштаба изображения. Отношение бесконечно малого отрезка линии на плоскости в проекции Гаусса к соответствующему бесконечно малому отрезку на поверхности эллипсоида называется масштабом изображения.

m = (138)

Величина и степень изменяемости масштаба изображения являются мерилом искажений линейных элементов на проекции в отдельных ее частях. В каждой точке проекции масштаб различный и искажения зависят от удаления точки от осевого меридиана зоны. Масштаб вдоль осевого меридиана равен единице. Наибольшее искажение получают длины отрезков, находящиеся на краю шестиградусной зоны на широте экватора. Опуская вывод формулы, можем записать, что

m = 1 + (139)

где Rm – средний радиус кривизны Земли; Rm = 6 371 км.

Ym = - средняя ордината линии.

В проекции Гаусса:

- бесконечно малые фигуры подобны соответствующим фигурам на земной поверхности;

- не искажаются длины дуг осевых меридианов;

- длины других линий и площади фигур получаются искаженными.







Дата добавления: 2015-10-01; просмотров: 2378. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия